Xiaofan Xiong, Brian J Smith, Stephen A Graves, Michael M Graham, John M Buatti, Reinhard R Beichel
{"title":"Head and Neck Cancer Segmentation in FDG PET Images: Performance Comparison of Convolutional Neural Networks and Vision Transformers.","authors":"Xiaofan Xiong, Brian J Smith, Stephen A Graves, Michael M Graham, John M Buatti, Reinhard R Beichel","doi":"10.3390/tomography9050151","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks (CNNs) have a proven track record in medical image segmentation. Recently, Vision Transformers were introduced and are gaining popularity for many computer vision applications, including object detection, classification, and segmentation. Machine learning algorithms such as CNNs or Transformers are subject to an inductive bias, which can have a significant impact on the performance of machine learning models. This is especially relevant for medical image segmentation applications where limited training data are available, and a model's inductive bias should help it to generalize well. In this work, we quantitatively assess the performance of two CNN-based networks (U-Net and U-Net-CBAM) and three popular Transformer-based segmentation network architectures (UNETR, TransBTS, and VT-UNet) in the context of HNC lesion segmentation in volumetric [F-18] fluorodeoxyglucose (FDG) PET scans. For performance assessment, 272 FDG PET-CT scans of a clinical trial (ACRIN 6685) were utilized, which includes a total of 650 lesions (primary: 272 and secondary: 378). The image data used are highly diverse and representative for clinical use. For performance analysis, several error metrics were utilized. The achieved Dice coefficient ranged from 0.833 to 0.809 with the best performance being achieved by CNN-based approaches. U-Net-CBAM, which utilizes spatial and channel attention, showed several advantages for smaller lesions compared to the standard U-Net. Furthermore, our results provide some insight regarding the image features relevant for this specific segmentation application. In addition, results highlight the need to utilize primary as well as secondary lesions to derive clinically relevant segmentation performance estimates avoiding biases.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"9 5","pages":"1933-1948"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography9050151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural networks (CNNs) have a proven track record in medical image segmentation. Recently, Vision Transformers were introduced and are gaining popularity for many computer vision applications, including object detection, classification, and segmentation. Machine learning algorithms such as CNNs or Transformers are subject to an inductive bias, which can have a significant impact on the performance of machine learning models. This is especially relevant for medical image segmentation applications where limited training data are available, and a model's inductive bias should help it to generalize well. In this work, we quantitatively assess the performance of two CNN-based networks (U-Net and U-Net-CBAM) and three popular Transformer-based segmentation network architectures (UNETR, TransBTS, and VT-UNet) in the context of HNC lesion segmentation in volumetric [F-18] fluorodeoxyglucose (FDG) PET scans. For performance assessment, 272 FDG PET-CT scans of a clinical trial (ACRIN 6685) were utilized, which includes a total of 650 lesions (primary: 272 and secondary: 378). The image data used are highly diverse and representative for clinical use. For performance analysis, several error metrics were utilized. The achieved Dice coefficient ranged from 0.833 to 0.809 with the best performance being achieved by CNN-based approaches. U-Net-CBAM, which utilizes spatial and channel attention, showed several advantages for smaller lesions compared to the standard U-Net. Furthermore, our results provide some insight regarding the image features relevant for this specific segmentation application. In addition, results highlight the need to utilize primary as well as secondary lesions to derive clinically relevant segmentation performance estimates avoiding biases.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.