Julien J. Caubel , Vi H. Rapp , Sharon S. Chen , Ashok J. Gadgil
{"title":"Practical design considerations for secondary air injection in wood-burning cookstoves: An experimental study","authors":"Julien J. Caubel , Vi H. Rapp , Sharon S. Chen , Ashok J. Gadgil","doi":"10.1016/j.deveng.2020.100049","DOIUrl":null,"url":null,"abstract":"<div><p>Billions of households worldwide cook using biomass fires and suffer from the toxic smoke emitted into their homes. Laboratory studies of wood-burning cookstoves demonstrate that secondary air injection can greatly reduce the emission of harmful air pollution, but these experimental advancements are not easily translated into practical cookstove designs that can be widely adopted. In this study, we use a modular cookstove platform to experimentally quantify the practical secondary air injection design requirements (e.g., flow rate, pressure, and temperature) to reduce mass emissions of particulate matter (PM), carbon monoxide (CO), and black carbon (BC) by at least 90% relative to a traditional cooking fire. Over the course of 111 experimental trials, we illuminate the physical mechanisms that drive emission reductions, and outline fundamental design principles to optimize cookstove performance. Using the experimental data, we demonstrate that low-cost (<$10) fans and blowers are available to drive the secondary flow, and can be independently powered using an inexpensive thermoelectric generator mounted nearby. Furthermore, size-resolved PM measurements show that secondary air injection inhibits particle growth, but the total number of particles generated remains relatively unaffected. We discuss the potential impacts for human health and investigate methods to mitigate the PM formation mechanisms that persist.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"5 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.deveng.2020.100049","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728520300038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 9
Abstract
Billions of households worldwide cook using biomass fires and suffer from the toxic smoke emitted into their homes. Laboratory studies of wood-burning cookstoves demonstrate that secondary air injection can greatly reduce the emission of harmful air pollution, but these experimental advancements are not easily translated into practical cookstove designs that can be widely adopted. In this study, we use a modular cookstove platform to experimentally quantify the practical secondary air injection design requirements (e.g., flow rate, pressure, and temperature) to reduce mass emissions of particulate matter (PM), carbon monoxide (CO), and black carbon (BC) by at least 90% relative to a traditional cooking fire. Over the course of 111 experimental trials, we illuminate the physical mechanisms that drive emission reductions, and outline fundamental design principles to optimize cookstove performance. Using the experimental data, we demonstrate that low-cost (<$10) fans and blowers are available to drive the secondary flow, and can be independently powered using an inexpensive thermoelectric generator mounted nearby. Furthermore, size-resolved PM measurements show that secondary air injection inhibits particle growth, but the total number of particles generated remains relatively unaffected. We discuss the potential impacts for human health and investigate methods to mitigate the PM formation mechanisms that persist.
Development EngineeringEconomics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍:
Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."