{"title":"Time-dependent subsonic ablation pressure scalings for soft X-ray heated low- and intermediate-Z materials at drive temperatures of up to 400 eV","authors":"William Trickey, Jamie Walsh, John Pasley","doi":"10.1016/j.hedp.2022.100995","DOIUrl":null,"url":null,"abstract":"<div><p>The soft X-ray driven subsonic ablation of five different materials with atomic numbers ranging from 3.5 to 22 is investigated for radiation drive temperatures of up to 400<!--> <!-->eV. Simulations were performed using the one-dimensional radiation hydrodynamics simulation code HYADES. For each material, ablation pressure scaling-laws are determined as a function of drive radiation-temperature and time, assuming that the irradiation lasts for a period of a few nanoseconds and that the drive temperature remains constant during this period. For all the materials, the maximum drive-temperature for subsonic operation is identified. As expected, lower-Z materials demonstrate a stronger scaling of ablation pressure with radiation temperature and a more gradual fall off with time. However, the lowest-Z materials transition to trans- and super-sonic ablation at temperatures of only a few hundred eV.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"44 ","pages":"Article 100995"},"PeriodicalIF":1.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574181822000209/pdfft?md5=0525f4a083fcc937b86d94b3d51d85e9&pid=1-s2.0-S1574181822000209-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181822000209","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 1
Abstract
The soft X-ray driven subsonic ablation of five different materials with atomic numbers ranging from 3.5 to 22 is investigated for radiation drive temperatures of up to 400 eV. Simulations were performed using the one-dimensional radiation hydrodynamics simulation code HYADES. For each material, ablation pressure scaling-laws are determined as a function of drive radiation-temperature and time, assuming that the irradiation lasts for a period of a few nanoseconds and that the drive temperature remains constant during this period. For all the materials, the maximum drive-temperature for subsonic operation is identified. As expected, lower-Z materials demonstrate a stronger scaling of ablation pressure with radiation temperature and a more gradual fall off with time. However, the lowest-Z materials transition to trans- and super-sonic ablation at temperatures of only a few hundred eV.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.