Sleep in Alzheimer's Disease–Beyond Amyloid

Jerrah K. Holth, Tirth K. Patel, David M. Holtzman
{"title":"Sleep in Alzheimer's Disease–Beyond Amyloid","authors":"Jerrah K. Holth,&nbsp;Tirth K. Patel,&nbsp;David M. Holtzman","doi":"10.1016/j.nbscr.2016.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Sleep disorders are prevalent in Alzheimer's disease (AD) and a major cause of institutionalization. Like AD pathology, sleep abnormalities can appear years before cognitive decline and may be predictive of dementia. A bidirectional relationship between sleep and amyloid β (Aβ) has been well established with disturbed sleep and increased wakefulness leading to increased Aβ production and decreased Aβ clearance; whereas Aβ deposition is associated with increased wakefulness and sleep disturbances. Aβ fluctuates with the sleep-wake cycle and is higher during wakefulness and lower during sleep. This fluctuation is lost with Aβ deposition, likely due to its sequestration into amyloid plaques. As such, Aβ is believed to play a significant role in the development of sleep disturbances in the preclinical and clinical phases of AD. In addition to Aβ, the influence of tau AD pathology is likely important to the sleep disturbances observed in AD. Abnormal tau is the earliest observable AD-like pathology in the brain with abnormal tau phosphorylation in many sleep regulating regions such as the locus coeruleus, dorsal raphe, tuberomammillary nucleus, parabrachial nucleus, and basal forebrain prior to the appearance of amyloid or cortical tau pathology. Furthermore, human tau mouse models exhibit AD-like sleep disturbances and sleep changes are common in other tauopathies including frontotemporal dementia and progressive supranuclear palsy. Together these observations suggest that tau pathology can induce sleep disturbances and may play a large role in the sleep disruption seen in AD. To elucidate the relationship between sleep and AD it will be necessary to not only understand the role of amyloid but also tau and how these two pathologies, together with comorbid pathology such as alpha-synuclein, interact and affect sleep regulation in the brain.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2016.08.002","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994416300062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 117

Abstract

Sleep disorders are prevalent in Alzheimer's disease (AD) and a major cause of institutionalization. Like AD pathology, sleep abnormalities can appear years before cognitive decline and may be predictive of dementia. A bidirectional relationship between sleep and amyloid β (Aβ) has been well established with disturbed sleep and increased wakefulness leading to increased Aβ production and decreased Aβ clearance; whereas Aβ deposition is associated with increased wakefulness and sleep disturbances. Aβ fluctuates with the sleep-wake cycle and is higher during wakefulness and lower during sleep. This fluctuation is lost with Aβ deposition, likely due to its sequestration into amyloid plaques. As such, Aβ is believed to play a significant role in the development of sleep disturbances in the preclinical and clinical phases of AD. In addition to Aβ, the influence of tau AD pathology is likely important to the sleep disturbances observed in AD. Abnormal tau is the earliest observable AD-like pathology in the brain with abnormal tau phosphorylation in many sleep regulating regions such as the locus coeruleus, dorsal raphe, tuberomammillary nucleus, parabrachial nucleus, and basal forebrain prior to the appearance of amyloid or cortical tau pathology. Furthermore, human tau mouse models exhibit AD-like sleep disturbances and sleep changes are common in other tauopathies including frontotemporal dementia and progressive supranuclear palsy. Together these observations suggest that tau pathology can induce sleep disturbances and may play a large role in the sleep disruption seen in AD. To elucidate the relationship between sleep and AD it will be necessary to not only understand the role of amyloid but also tau and how these two pathologies, together with comorbid pathology such as alpha-synuclein, interact and affect sleep regulation in the brain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿尔茨海默病的睡眠——淀粉样蛋白
睡眠障碍在阿尔茨海默病(AD)中很普遍,也是制度化的主要原因。像阿尔茨海默病一样,睡眠异常可以在认知能力下降前几年出现,可能预示着痴呆。睡眠与β淀粉样蛋白(Aβ)之间存在双向关系,睡眠紊乱和清醒增加导致Aβ生成增加和Aβ清除减少;而Aβ沉积与觉醒和睡眠障碍增加有关。Aβ随睡眠-觉醒周期波动,清醒时高,睡眠时低。这种波动随着Aβ沉积而消失,可能是由于其被隔离到淀粉样斑块中。因此,a β被认为在阿尔茨海默病临床前和临床阶段的睡眠障碍发展中发挥重要作用。除了Aβ外,AD病理的影响可能对AD患者观察到的睡眠障碍很重要。异常tau蛋白是大脑中最早可观察到的ad样病理,在淀粉样蛋白或皮质tau蛋白病理出现之前,许多睡眠调节区域(如蓝斑、中脑背、结节乳头核、臂旁核和基底前脑)的tau蛋白磷酸化异常。此外,人类tau小鼠模型表现出ad样睡眠障碍,而睡眠改变在其他tau病变中也很常见,包括额颞叶痴呆和进行性核上性麻痹。总之,这些观察结果表明,tau病理可以诱发睡眠障碍,并可能在阿尔茨海默病的睡眠中断中发挥重要作用。为了阐明睡眠与AD之间的关系,不仅需要了解淀粉样蛋白的作用,还需要了解tau蛋白的作用,以及这两种病理以及共病病理如α -突触核蛋白如何相互作用并影响大脑中的睡眠调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Sleep and Circadian Rhythms
Neurobiology of Sleep and Circadian Rhythms Neuroscience-Behavioral Neuroscience
CiteScore
4.50
自引率
0.00%
发文量
9
审稿时长
69 days
期刊介绍: Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.
期刊最新文献
Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats Gender differences in sleep quality among Iranian traditional and industrial drug users Development of Sleep and Circadian Rhythms: Function and Dysfunction. Effects of age and sex on photoperiod modulation of nucleus accumbens monoamine content and release in adolescence and adulthood The impact of long haul travel on the sleep of elite athletes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1