Copula parameter change test for nonlinear AR models with nonlinear GARCH errors

Q Mathematics Statistical Methodology Pub Date : 2015-07-01 DOI:10.1016/j.stamet.2014.12.001
Sangyeol Lee , Byungsoo Kim
{"title":"Copula parameter change test for nonlinear AR models with nonlinear GARCH errors","authors":"Sangyeol Lee ,&nbsp;Byungsoo Kim","doi":"10.1016/j.stamet.2014.12.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this paper, we study the problem of testing for a copula<span> parameter change in nonlinear autoregressive (AR) models with nonlinear generalized autoregressive conditional heteroskedasticity (GARCH) errors. To perform a test, we propose the cusum test based on pseudo maximum likelihood estimates of copula parameters. We derive its limiting </span></span>null distribution under </span>regularity conditions. For illustration, we conduct a simulation study with an emphasis on STAR–STGARCH models. A real data analysis applied to the S&amp;P 500 index and IBM stock price is also considered.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"25 ","pages":"Pages 1-22"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2014.12.001","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312715000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we study the problem of testing for a copula parameter change in nonlinear autoregressive (AR) models with nonlinear generalized autoregressive conditional heteroskedasticity (GARCH) errors. To perform a test, we propose the cusum test based on pseudo maximum likelihood estimates of copula parameters. We derive its limiting null distribution under regularity conditions. For illustration, we conduct a simulation study with an emphasis on STAR–STGARCH models. A real data analysis applied to the S&P 500 index and IBM stock price is also considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非线性GARCH误差的非线性AR模型的Copula参数变化检验
研究了具有非线性广义自回归条件异方差(GARCH)误差的非线性自回归(AR)模型的耦合参数变化检验问题。为了进行检验,我们提出了基于copula参数的伪极大似然估计的cusum检验。在正则性条件下,导出了它的极限零分布。为了说明,我们进行了一个模拟研究,重点是STAR-STGARCH模型。应用于标准普尔500指数和IBM股票价格的真实数据分析也被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methodology
Statistical Methodology STATISTICS & PROBABILITY-
CiteScore
0.59
自引率
0.00%
发文量
0
期刊介绍: Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.
期刊最新文献
Virulence Factors, Capsular Serotypes and Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae and Classical Klebsiella pneumoniae in Southeast Iran. Validity of estimated prevalence of decreased kidney function and renal replacement therapy from primary care electronic health records compared with national survey and registry data in the United Kingdom. Editorial Board Nonparametric M-estimation for right censored regression model with stationary ergodic data Symmetric directional false discovery rate control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1