{"title":"Statistical inference on partial linear additive models with distortion measurement errors","authors":"Yujie Gai , Jun Zhang , Gaorong Li , Xinchao Luo","doi":"10.1016/j.stamet.2015.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider statistical inference for partial linear additive models (PLAMs) when the linear covariates are measured with errors and distorted by unknown functions of commonly observable confounding variables. A semiparametric profile least squares estimation procedure is proposed to estimate unknown parameter under unrestricted and restricted conditions. Asymptotic properties for the estimators are established. To test a hypothesis on the parametric components, a test statistic based on the difference between the residual sums of squares under the null and alternative hypotheses is proposed, and we further show that its limiting distribution is a weighted sum of independent standard chi-squared distributions. A bootstrap procedure is further proposed to calculate critical values. Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analyzed for an illustration.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"27 ","pages":"Pages 20-38"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2015.05.004","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312715000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
We consider statistical inference for partial linear additive models (PLAMs) when the linear covariates are measured with errors and distorted by unknown functions of commonly observable confounding variables. A semiparametric profile least squares estimation procedure is proposed to estimate unknown parameter under unrestricted and restricted conditions. Asymptotic properties for the estimators are established. To test a hypothesis on the parametric components, a test statistic based on the difference between the residual sums of squares under the null and alternative hypotheses is proposed, and we further show that its limiting distribution is a weighted sum of independent standard chi-squared distributions. A bootstrap procedure is further proposed to calculate critical values. Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analyzed for an illustration.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.