Tratamiento de la informacion de violencia de género. Con aportaciones de la inteligencia artificial

M. Eulàlia Trias Capella , Raquel Guardia Villalba , Ramon Trias Capella
{"title":"Tratamiento de la informacion de violencia de género. Con aportaciones de la inteligencia artificial","authors":"M. Eulàlia Trias Capella ,&nbsp;Raquel Guardia Villalba ,&nbsp;Ramon Trias Capella","doi":"10.1016/j.reml.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction/objectives</h3><p>Violence against women is still a serious social and health problem, despite the measures implemented in recent years. The examination of the victims by the forensic doctor in the courts is of great interest since it provides information related not only to the aggression, but also to their social, family and economic environment. The objective is to use this information to identify groups at risk and improve/implement the necessary measures.</p></div><div><h3>Material and methods</h3><p>In this work, the forensic has collected, for eight years, abundant data on the victims examined in L'Hospitalet de Llobregat. The sample includes 1,622 cases of women who have been victims of gender violence. A descriptive study of the population and of the lesions has been carried out.</p></div><div><h3>Results</h3><p>The paper presents the main variables studied, both socioeconomic and referring to the aggression itself. This study also analyzes the reentry of the victims, the repetition of aggressions (revictimization), which are 10.9% of the sample. Finally, the results obtained after applying artificial intelligence techniques -in this case, CaRT classification trees- are presented.</p></div><div><h3>Conclusions</h3><p>With the results obtained, we conclude that the treatment of the information collected and systematized from the medical-forensic intervention allows a better understanding of Violence Against Women, from which we can extract suggestions on the adoption of care and support measures for the victims and the most vulnerable groups, as well as administrative resources and the optimization of prevention programs.</p></div>","PeriodicalId":35705,"journal":{"name":"Revista Espanola de Medicina Legal","volume":"50 1","pages":"Pages 29-39"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Espanola de Medicina Legal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377473223000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction/objectives

Violence against women is still a serious social and health problem, despite the measures implemented in recent years. The examination of the victims by the forensic doctor in the courts is of great interest since it provides information related not only to the aggression, but also to their social, family and economic environment. The objective is to use this information to identify groups at risk and improve/implement the necessary measures.

Material and methods

In this work, the forensic has collected, for eight years, abundant data on the victims examined in L'Hospitalet de Llobregat. The sample includes 1,622 cases of women who have been victims of gender violence. A descriptive study of the population and of the lesions has been carried out.

Results

The paper presents the main variables studied, both socioeconomic and referring to the aggression itself. This study also analyzes the reentry of the victims, the repetition of aggressions (revictimization), which are 10.9% of the sample. Finally, the results obtained after applying artificial intelligence techniques -in this case, CaRT classification trees- are presented.

Conclusions

With the results obtained, we conclude that the treatment of the information collected and systematized from the medical-forensic intervention allows a better understanding of Violence Against Women, from which we can extract suggestions on the adoption of care and support measures for the victims and the most vulnerable groups, as well as administrative resources and the optimization of prevention programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处理有关性别暴力的信息。人工智能的贡献
导言/目标尽管近年来采取了一些措施,但对妇女的暴力行为仍然是一个严重的社会和健康问题。法医在法庭上对受害者进行的检查非常重要,因为它不仅提供了与侵害行为有关的信息,还提供 了与受害者的社会、家庭和经济环境有关的信息。材料和方法在这项工作中,法医收集了八年来在 L'Hospitalet de Llobregat 接受检查的受害者的大量数据。样本包括 1 622 例性别暴力受害妇女。本文介绍了所研究的主要变量,既包括社会经济变量,也包括侵害行为本身的变量。本研究还分析了受害者重返社会、再次遭受侵害(再次受害)的情况,占样本的 10.9%。最后,介绍了应用人工智能技术--在本例中是 CaRT 分类树--后获得的结果。结论根据所获得的结果,我们得出结论,对从医疗法医干预中收集和系统化的信息进 行处理,可以让我们更好地了解对妇女的暴力行为,我们可以从中提取建议,为受害者和最脆弱群 体采取护理和支持措施,以及管理资源和优化预防方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Espanola de Medicina Legal
Revista Espanola de Medicina Legal Medicine-Pathology and Forensic Medicine
CiteScore
1.90
自引率
0.00%
发文量
27
审稿时长
41 days
期刊最新文献
Can dorsal knuckle creases facilitate human identification in forensic medicine? A pilot study Epidemiología del consumo de sustancias lícitas e ilícitas en muertes violentas en una región del sur de Chile, entre los años 2015 y 2022 Psicogeriatría en el ámbito penal: particularidades y recomendaciones Non-fatal injuries caused by corrosive chemical agents in Colombia between 2018 and 2021: Characterization of victims, perpetrators, and contextual factors Avances en nomenclatura para la implementación de la genómica forense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1