Wind-Wave Breaking

W. Kendall Melville
{"title":"Wind-Wave Breaking","authors":"W. Kendall Melville","doi":"10.1016/j.piutam.2018.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Rational models of wind-wave growth were proposed in the 1950s (Miles 1957, Phillips 1957), theories of wave-wave interactions (Phillips 1960, Hasselmann 1962, Zakharov 1968) and wave-action conservation for waves in fluids (Whitham 1965, Bretherton and Garrett 1969) in the 1960s, but it was not until the 1980s that laboratory experiments (Duncan 1981, Melville and Rapp 1985) and a seminal paper by Owen Phillips in 1985 on a model of the equilibrium range in wind-wave spectra, and a formulation of breaking, began a rational program of research into the role of breaking in surface wave kinematics and dynamics. Two important features of Phillips’ 1985 paper were the introduction of Λ(c)dc, the average total length of breaking fronts per unit area of ocean moving with velocities in the range (c, c + dc) and the statement that the average rate of energy loss per unit area by breakers in the same velocity range was given by</p><p><span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mi>b</mi></msub><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mi>d</mi><mi>c</mi><mo>=</mo><mi>b</mi><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mi>ρ</mi><msup><mi>g</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi>c</mi><mn>5</mn></msup><mstyle><mi>Λ</mi></mstyle><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mi>d</mi><mi>c</mi></mrow></math></span></p><p>where b is a dimensionless breaking strength and g is gravity. The energy loss per unit length of breaker, <em>b</em>ρ<em>g<sup>-1</sup>c<sup>5</sup></em>, was based on Duncan’s work, but anticipated in part by Lighthill (1978). Lower order moments of Λ(c) describe kinematical features of breaking up to the third moment, with the fourth moment describing the momentum flux from waves to currents. The structure of the dissipation equation imposes a combination of different approaches to quantifying it. Estimates of b have depended on arguments based on Taylor’s (1935) inertial scaling of turbulence dissipation, supported by laboratory experiments and recent DNS and LES numerical experiments, while Λ(c) over any significant dynamical range can only be measured in the field. The success of the early attempts to follow this approach has led to recent work on air entrainment for gas transfer, and theoretical uses of fundamental vortex dynamics to develop our knowledge of the role of breaking in air-sea interaction. In this paper I will review the material from the laboratory, through scaling arguments, modeling and field measurements.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"26 ","pages":"Pages 30-42"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2018.03.004","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221098381830004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rational models of wind-wave growth were proposed in the 1950s (Miles 1957, Phillips 1957), theories of wave-wave interactions (Phillips 1960, Hasselmann 1962, Zakharov 1968) and wave-action conservation for waves in fluids (Whitham 1965, Bretherton and Garrett 1969) in the 1960s, but it was not until the 1980s that laboratory experiments (Duncan 1981, Melville and Rapp 1985) and a seminal paper by Owen Phillips in 1985 on a model of the equilibrium range in wind-wave spectra, and a formulation of breaking, began a rational program of research into the role of breaking in surface wave kinematics and dynamics. Two important features of Phillips’ 1985 paper were the introduction of Λ(c)dc, the average total length of breaking fronts per unit area of ocean moving with velocities in the range (c, c + dc) and the statement that the average rate of energy loss per unit area by breakers in the same velocity range was given by

ɛb(c)dc=b(c)ρg1c5Λ(c)dc

where b is a dimensionless breaking strength and g is gravity. The energy loss per unit length of breaker, bρg-1c5, was based on Duncan’s work, but anticipated in part by Lighthill (1978). Lower order moments of Λ(c) describe kinematical features of breaking up to the third moment, with the fourth moment describing the momentum flux from waves to currents. The structure of the dissipation equation imposes a combination of different approaches to quantifying it. Estimates of b have depended on arguments based on Taylor’s (1935) inertial scaling of turbulence dissipation, supported by laboratory experiments and recent DNS and LES numerical experiments, while Λ(c) over any significant dynamical range can only be measured in the field. The success of the early attempts to follow this approach has led to recent work on air entrainment for gas transfer, and theoretical uses of fundamental vortex dynamics to develop our knowledge of the role of breaking in air-sea interaction. In this paper I will review the material from the laboratory, through scaling arguments, modeling and field measurements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风浪破碎
20世纪50年代提出了风浪增长的合理模型(Miles 1957, Phillips 1957), 60年代提出了波-波相互作用理论(Phillips 1960, Hasselmann 1962, Zakharov 1968), 60年代提出了流体中波浪的波作用守恒理论(Whitham 1965, Bretherton和Garrett 1969),但直到20世纪80年代,实验室实验(Duncan 1981, Melville和Rapp 1985)和欧文·菲利普斯1985年关于风浪谱平衡范围模型的开创性论文,并提出了破断的公式,开始了对破断在表面波运动学和动力学中的作用的合理规划研究。菲利普斯1985年论文的两个重要特征是引入Λ(c)dc,即速度在(c, c + dc)范围内的每单位面积海洋运动的破碎面平均总长度,以及在相同速度范围内的每单位面积破碎面平均能量损失率的陈述,其中b是无因次断裂强度,g是重力。每单位长度断路器的能量损失,bρg-1c5,是基于Duncan的工作,但部分是由Lighthill(1978)预测的。Λ(c)的低阶矩描述了分解到第三阶矩的运动学特征,第四阶矩描述了从波到流的动量通量。耗散方程的结构要求结合不同的方法来量化它。b的估计依赖于基于Taylor(1935)湍流耗散惯性标度的论据,得到实验室实验和最近的DNS和LES数值实验的支持,而Λ(c)在任何重要的动态范围内只能在现场测量。遵循这种方法的早期尝试的成功导致了最近关于气体传输的空气夹带的工作,以及基本涡旋动力学的理论应用,以发展我们对海气相互作用中断裂作用的认识。在本文中,我将通过缩放论证、建模和现场测量来回顾实验室的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Deterministic numerical modelling of three-dimensional rogue waves on large scale with presence of wind Mechanisms And Modelling of Wind Driven Waves Progress in Operational Wave Forecasting Wind-Wave Breaking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1