Benchmarking recombinant Pichia pastoris for 3-hydroxypropionic acid production from glycerol

IF 4.8 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Biotechnology Pub Date : 2021-06-03 DOI:10.1111/1751-7915.13833
Albert Fina, Gabriela Coelho Brêda, Míriam Pérez-Trujillo, Denise Maria Guimar?es Freire, Rodrigo Volcan Almeida, Joan Albiol, Pau Ferrer
{"title":"Benchmarking recombinant Pichia pastoris for 3-hydroxypropionic acid production from glycerol","authors":"Albert Fina,&nbsp;Gabriela Coelho Brêda,&nbsp;Míriam Pérez-Trujillo,&nbsp;Denise Maria Guimar?es Freire,&nbsp;Rodrigo Volcan Almeida,&nbsp;Joan Albiol,&nbsp;Pau Ferrer","doi":"10.1111/1751-7915.13833","DOIUrl":null,"url":null,"abstract":"<p>The use of the methylotrophic yeast <i>Pichia pastoris</i> (<i>Komagataella phaffi</i>) to produce heterologous proteins has been largely reported. However, investigations addressing the potential of this yeast to produce bulk chemicals are still scarce. In this study, we have studied the use of <i>P. pastoris</i> as a cell factory to produce the commodity chemical 3-hydroxypropionic acid (3-HP) from glycerol. 3-HP is a chemical platform which can be converted into acrylic acid and to other alternatives to petroleum-based products. To this end, the <i>mcr</i> gene from <i>Chloroflexus aurantiacus</i> was introduced into <i>P. pastoris</i>. This single modification allowed the production of 3-HP from glycerol through the malonyl-CoA pathway. Further enzyme and metabolic engineering modifications aimed at increasing cofactor and metabolic precursors availability allowed a 14-fold increase in the production of 3-HP compared to the initial strain. The best strain (PpHP6) was tested in a fed-batch culture, achieving a final concentration of 3-HP of 24.75 g l<sup>−1</sup>, a product yield of 0.13 g g<sup>−1</sup> and a volumetric productivity of 0.54 g l<sup>−1</sup> h<sup>−1</sup>, which, to our knowledge, is the highest volumetric productivity reported in yeast. These results benchmark <i>P. pastoris</i> as a promising platform to produce bulk chemicals for the revalorization of crude glycerol and, in particular, to produce 3-HP.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 4","pages":"1671-1682"},"PeriodicalIF":4.8000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13833","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13833","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 14

Abstract

The use of the methylotrophic yeast Pichia pastoris (Komagataella phaffi) to produce heterologous proteins has been largely reported. However, investigations addressing the potential of this yeast to produce bulk chemicals are still scarce. In this study, we have studied the use of P. pastoris as a cell factory to produce the commodity chemical 3-hydroxypropionic acid (3-HP) from glycerol. 3-HP is a chemical platform which can be converted into acrylic acid and to other alternatives to petroleum-based products. To this end, the mcr gene from Chloroflexus aurantiacus was introduced into P. pastoris. This single modification allowed the production of 3-HP from glycerol through the malonyl-CoA pathway. Further enzyme and metabolic engineering modifications aimed at increasing cofactor and metabolic precursors availability allowed a 14-fold increase in the production of 3-HP compared to the initial strain. The best strain (PpHP6) was tested in a fed-batch culture, achieving a final concentration of 3-HP of 24.75 g l−1, a product yield of 0.13 g g−1 and a volumetric productivity of 0.54 g l−1 h−1, which, to our knowledge, is the highest volumetric productivity reported in yeast. These results benchmark P. pastoris as a promising platform to produce bulk chemicals for the revalorization of crude glycerol and, in particular, to produce 3-HP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重组毕赤酵母对标甘油生产3-羟基丙酸
利用甲基营养酵母毕赤酵母(Komagataella phaffi)生产异源蛋白已被大量报道。然而,针对这种酵母生产散装化学品的潜力的研究仍然很少。在这项研究中,我们研究了利用pastoris作为细胞工厂从甘油生产商品化学品3-羟基丙酸(3-HP)。3-HP是一种化学平台,可以转化为丙烯酸和其他石油基产品的替代品。为此,我们将金银桃的mcr基因引入到巴斯德酵母中。这种单一的修饰允许通过丙二酰辅酶a途径从甘油生产3-HP。进一步的酶和代谢工程修饰旨在增加辅助因子和代谢前体的可用性,使3-HP的产量比初始菌株增加了14倍。最佳菌株(PpHP6)在补料分批培养中进行了测试,最终的3-HP浓度为24.75 g l−1,产品产量为0.13 g g−1,体积产率为0.54 g l−1 h−1,据我们所知,这是酵母中最高的体积产率。这些结果将巴斯德酵母作为一个有前途的平台来生产用于粗甘油再估值的散装化学品,特别是生产3-HP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
9.80
自引率
3.50%
发文量
162
审稿时长
6-12 weeks
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
Web alert: Fabrication with microbial spores Issue Information Web alert: Metagenomic mining for biotechnology Issue Information Non-A to E hepatitis in children: Detecting a novel viral epidemic during the COVID-19 pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1