Maria Falduto, Francesco Smedile, Man Zhang, Ting Zheng, Jieyu Zhu, Qingrong Huang, Richard Weeks, Alexey M. Ermakov, Michael L. Chikindas
{"title":"Anti-obesity effects of Chenpi: an artificial gastrointestinal system study","authors":"Maria Falduto, Francesco Smedile, Man Zhang, Ting Zheng, Jieyu Zhu, Qingrong Huang, Richard Weeks, Alexey M. Ermakov, Michael L. Chikindas","doi":"10.1111/1751-7915.14005","DOIUrl":null,"url":null,"abstract":"<p>The gut microbiota plays a significant role in human health; however, the complex relationship between gut microbial communities and host health is still to be thoroughly studied and understood. Microbes in the distal gut contribute to host health through the biosynthesis of vitamins and essential amino acids and the generation of important metabolic by-products from dietary components that are left undigested by the small intestine. Aged citrus peel (Chenpi) is used in traditional Chinese medicine to lower cholesterol, promote weight loss and treat various gastrointestinal symptoms. This study investigated how the microbial community changes during treatment with Chenpi using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Two preparations of Chenpi extract were tested: Chenpi suspended in oil only and Chenpi in a viscoelastic emulsion. Short-chain fatty acids (SCFAs) were measured during treatment to monitor changes in the microbial community of the colon presenting a decrease in production for acetic, propionic and butyric acid (ANOVA (<i>P</i> < 0.001) during the 15 days of treatment. 16S rRNA sequencing of microbial samples showed a clear difference between the two treatments at the different sampling times (ANOSIM <i>P</i> < 0.003; ADOSIM <i>P</i> < 0.002 [<i>R</i><sup>2</sup> = 69%]). Beta diversity analysis by PcoA showed differences between the two Chenpi formulations for treatment day 6. These differences were no longer detectable as soon as the Chenpi treatment was stopped, showing a reversible effect of Chenpi on the human microbiome. 16S rRNA sequencing of microbial samples from the descending colon showed an increase in <i>Firmicutes</i> for the treatment with the viscoelastic emulsion. At the genus level, <i>Roseburia</i>, <i>Blautia</i>, <i>Subdoligranulum</i> and <i>Eubacterium</i> increased in numbers during the viscoelastic emulsion treatment. This study sheds light on the anti-obesity effect of a polymethoxyflavone (PMFs)-enriched Chenpi extract and creates a foundation for the identification of ‘obesity-prevention’ biomarkers in the gut microbiota.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 3","pages":"874-885"},"PeriodicalIF":4.8000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sfamjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14005","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
The gut microbiota plays a significant role in human health; however, the complex relationship between gut microbial communities and host health is still to be thoroughly studied and understood. Microbes in the distal gut contribute to host health through the biosynthesis of vitamins and essential amino acids and the generation of important metabolic by-products from dietary components that are left undigested by the small intestine. Aged citrus peel (Chenpi) is used in traditional Chinese medicine to lower cholesterol, promote weight loss and treat various gastrointestinal symptoms. This study investigated how the microbial community changes during treatment with Chenpi using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Two preparations of Chenpi extract were tested: Chenpi suspended in oil only and Chenpi in a viscoelastic emulsion. Short-chain fatty acids (SCFAs) were measured during treatment to monitor changes in the microbial community of the colon presenting a decrease in production for acetic, propionic and butyric acid (ANOVA (P < 0.001) during the 15 days of treatment. 16S rRNA sequencing of microbial samples showed a clear difference between the two treatments at the different sampling times (ANOSIM P < 0.003; ADOSIM P < 0.002 [R2 = 69%]). Beta diversity analysis by PcoA showed differences between the two Chenpi formulations for treatment day 6. These differences were no longer detectable as soon as the Chenpi treatment was stopped, showing a reversible effect of Chenpi on the human microbiome. 16S rRNA sequencing of microbial samples from the descending colon showed an increase in Firmicutes for the treatment with the viscoelastic emulsion. At the genus level, Roseburia, Blautia, Subdoligranulum and Eubacterium increased in numbers during the viscoelastic emulsion treatment. This study sheds light on the anti-obesity effect of a polymethoxyflavone (PMFs)-enriched Chenpi extract and creates a foundation for the identification of ‘obesity-prevention’ biomarkers in the gut microbiota.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes