Nasser Nikfarjam, Matineh Ghomi, Tarun Agarwal, Mahnaz Hassanpour, Esmaeel Sharifi, Danial Khorsandi, Moonis Ali Khan, Filippo Rossi, Arianna Rossetti, Ehsan Nazarzadeh Zare, Navid Rabiee, Davoud Afshar, Massoud Vosough, Tapas Kumar Maiti, Virgilio Mattoli, Eric Lichtfouse, Franklin R. Tay, Pooyan Makvandi
{"title":"Antimicrobial Ionic Liquid-Based Materials for Biomedical Applications","authors":"Nasser Nikfarjam, Matineh Ghomi, Tarun Agarwal, Mahnaz Hassanpour, Esmaeel Sharifi, Danial Khorsandi, Moonis Ali Khan, Filippo Rossi, Arianna Rossetti, Ehsan Nazarzadeh Zare, Navid Rabiee, Davoud Afshar, Massoud Vosough, Tapas Kumar Maiti, Virgilio Mattoli, Eric Lichtfouse, Franklin R. Tay, Pooyan Makvandi","doi":"10.1002/adfm.202104148","DOIUrl":null,"url":null,"abstract":"<p>Excessive and unwarranted administration of antibiotics has invigorated the evolution of multidrug-resistant microbes. There is, therefore, an urgent need for advanced active compounds. Ionic liquids with short-lived ion-pair structures are highly tunable and have diverse applications. Apart from their unique physicochemical features, the newly discovered biological activities of ionic liquids have fascinated biochemists, microbiologists, and medical scientists. In particular, their antimicrobial properties have opened new vistas in overcoming the current challenges associated with combating antibiotic-resistant pathogens. Discussions regarding ionic liquid derivatives in monomeric and polymeric forms with antimicrobial activities are presented here. The antimicrobial mechanism of ionic liquids and parameters that affect their antimicrobial activities, such as chain length, cation/anion type, cation density, and polymerization, are considered. The potential applications of ionic liquids in the biomedical arena, including regenerative medicine, biosensing, and drug/biomolecule delivery, are presented to stimulate the scientific community to further improve the antimicrobial efficacy of ionic liquids.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"31 42","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adfm.202104148","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202104148","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 96
Abstract
Excessive and unwarranted administration of antibiotics has invigorated the evolution of multidrug-resistant microbes. There is, therefore, an urgent need for advanced active compounds. Ionic liquids with short-lived ion-pair structures are highly tunable and have diverse applications. Apart from their unique physicochemical features, the newly discovered biological activities of ionic liquids have fascinated biochemists, microbiologists, and medical scientists. In particular, their antimicrobial properties have opened new vistas in overcoming the current challenges associated with combating antibiotic-resistant pathogens. Discussions regarding ionic liquid derivatives in monomeric and polymeric forms with antimicrobial activities are presented here. The antimicrobial mechanism of ionic liquids and parameters that affect their antimicrobial activities, such as chain length, cation/anion type, cation density, and polymerization, are considered. The potential applications of ionic liquids in the biomedical arena, including regenerative medicine, biosensing, and drug/biomolecule delivery, are presented to stimulate the scientific community to further improve the antimicrobial efficacy of ionic liquids.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.