A Stochastic Filtering Algorithm Using Schrödinger Equation

Q2 Computer Science 自动化学报 Pub Date : 2014-10-01 DOI:10.1016/S1874-1029(14)60366-9
Hao-Han WU , Fu-Jiang JIN , Lian-You LAI , Liang WANG
{"title":"A Stochastic Filtering Algorithm Using Schrödinger Equation","authors":"Hao-Han WU ,&nbsp;Fu-Jiang JIN ,&nbsp;Lian-You LAI ,&nbsp;Liang WANG","doi":"10.1016/S1874-1029(14)60366-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides a new adaptive algorithm for single-step prediction by modeling the potential field of a one dimension Schrödinger wave equation using neural network. This new architecture is referred to as the recurrent quantum neural network (RQNN). The RQNN can filter the signal embedded with non-stationary noise without any priori knowledge of the shape of the signal and statistical properties of the noise. We compared the simulation results of the RQNN with a classical adaptive stochastic filter-RLS. It is shown that the RQNN is much more efficient in denoising signals embedded with Gaussian stationary, non-Gaussian stationary and Gaussian non-stationary noise such as DC, sinusoid, staircase and speech signals. The RQNN can enhance the signal to noise rate (SNR) by 20 dB, which is more than 10 dB given by the traditional technology when it denoising sinusoid signal.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 10","pages":"Pages 2370-2376"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60366-9","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914603669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

Abstract

This paper provides a new adaptive algorithm for single-step prediction by modeling the potential field of a one dimension Schrödinger wave equation using neural network. This new architecture is referred to as the recurrent quantum neural network (RQNN). The RQNN can filter the signal embedded with non-stationary noise without any priori knowledge of the shape of the signal and statistical properties of the noise. We compared the simulation results of the RQNN with a classical adaptive stochastic filter-RLS. It is shown that the RQNN is much more efficient in denoising signals embedded with Gaussian stationary, non-Gaussian stationary and Gaussian non-stationary noise such as DC, sinusoid, staircase and speech signals. The RQNN can enhance the signal to noise rate (SNR) by 20 dB, which is more than 10 dB given by the traditional technology when it denoising sinusoid signal.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Schrödinger方程的随机滤波算法
本文利用神经网络对一维Schrödinger波动方程的势场进行建模,提出了一种新的单步预测自适应算法。这种新架构被称为循环量子神经网络(RQNN)。RQNN可以对嵌入非平稳噪声的信号进行滤波,而无需先验地了解信号的形状和噪声的统计特性。我们将RQNN的仿真结果与经典的自适应随机滤波器rls进行了比较。结果表明,RQNN对嵌入高斯平稳、非高斯平稳和高斯非平稳噪声的信号(如直流信号、正弦信号、阶梯信号和语音信号)的去噪效率更高。RQNN在对正弦波信号进行降噪时,可将信噪比(SNR)提高20 dB,比传统降噪方法提高10 dB以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自动化学报
自动化学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍: ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.
期刊最新文献
Endocrine therapy and urogenital outcomes among women with a breast cancer diagnosis. Robust Approximations to Joint Chance-constrained Problems A Chebyshev-Gauss Pseudospectral Method for Solving Optimal Control Problems Forward Affine Point Set Matching Under Variational Bayesian Framework SAR Image Despeckling by Sparse Reconstruction Based on Shearlets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1