Neural Network-based Adaptive State-feedback Control for High-order Stochastic Nonlinear Systems

Q2 Computer Science 自动化学报 Pub Date : 2014-12-01 DOI:10.1016/S1874-1029(15)60002-7
Hui-Fang MIN , Na DUAN
{"title":"Neural Network-based Adaptive State-feedback Control for High-order Stochastic Nonlinear Systems","authors":"Hui-Fang MIN ,&nbsp;Na DUAN","doi":"10.1016/S1874-1029(15)60002-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on investigating the issue of adaptive state-feedback control based on neural networks (NNs) for a class of high-order stochastic uncertain systems with unknown nonlinearities. By introducing the radial basis function neural network (RBFNN) approximation method, utilizing the backstepping method and choosing an approximate Lyapunov function, we construct an adaptive state-feedback controller which assures the closed-loop system to be mean square semi-global-uniformly ultimately bounded (M-SGUUB). A simulation example is shown to illustrate the effectiveness of the design scheme.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 12","pages":"Pages 2968-2972"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(15)60002-7","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102915600027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 12

Abstract

This paper focuses on investigating the issue of adaptive state-feedback control based on neural networks (NNs) for a class of high-order stochastic uncertain systems with unknown nonlinearities. By introducing the radial basis function neural network (RBFNN) approximation method, utilizing the backstepping method and choosing an approximate Lyapunov function, we construct an adaptive state-feedback controller which assures the closed-loop system to be mean square semi-global-uniformly ultimately bounded (M-SGUUB). A simulation example is shown to illustrate the effectiveness of the design scheme.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的高阶随机非线性系统自适应状态反馈控制
研究了一类具有未知非线性的高阶随机不确定系统的基于神经网络的自适应状态反馈控制问题。通过引入径向基函数神经网络(RBFNN)逼近方法,利用反推法和选取近似Lyapunov函数,构造了一种自适应状态反馈控制器,保证了闭环系统是均方半全局一致最终有界的。仿真算例验证了该设计方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自动化学报
自动化学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍: ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.
期刊最新文献
Endocrine therapy and urogenital outcomes among women with a breast cancer diagnosis. Robust Approximations to Joint Chance-constrained Problems A Chebyshev-Gauss Pseudospectral Method for Solving Optimal Control Problems Forward Affine Point Set Matching Under Variational Bayesian Framework SAR Image Despeckling by Sparse Reconstruction Based on Shearlets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1