Optimizing the Electronic Structure of Ruthenium Oxide by Neodymium Doping for Enhanced Acidic Oxygen Evolution Catalysis

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2023-01-05 DOI:10.1002/adfm.202213304
Lu Li, Gengwei Zhang, Jingwen Xu, Huijie He, Bin Wang, Zhimao Yang, Shengchun Yang
{"title":"Optimizing the Electronic Structure of Ruthenium Oxide by Neodymium Doping for Enhanced Acidic Oxygen Evolution Catalysis","authors":"Lu Li,&nbsp;Gengwei Zhang,&nbsp;Jingwen Xu,&nbsp;Huijie He,&nbsp;Bin Wang,&nbsp;Zhimao Yang,&nbsp;Shengchun Yang","doi":"10.1002/adfm.202213304","DOIUrl":null,"url":null,"abstract":"<p>It is a great challenge to design active and durable oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) electrolyzer due to the high dissolution of electrocatalysts in acidic solution. Herein, the Nd-doped RuO<sub>2</sub> (Nd<sub>0.1</sub>RuO<sub>x</sub>) is developed for enhanced oxygen evolution in 0.5 <span>m</span> H<sub>2</sub>SO<sub>4</sub> solution with an overpotential of 211 mV to achieve 10 mA cm<sup>−2</sup>. The theoretical calculation reveals that the improved activity of Nd<sub>0.1</sub>RuO<sub>x</sub> is due to the moderate decrease of d-band center energy, which balances the adsorption and desorption of oxygen intermediates. Moreover, the formation of more high valence state Ru<sup>4+</sup> in Nd<sub>0.1</sub>RuO<sub>x</sub> is beneficial to the chemical stability of Ru species during the OER process, indicating that the introduction of Nd can effectively suppress the dissolution of Ru in acidic electrolytes. In addition, the PEM electrolyzer using Nd<sub>0.1</sub>RuO<sub>x</sub>/CC as the anode can be operated at 10 mA cm<sup>−2</sup> stably for 50 h. This study sheds new light on the design of the OER catalysts in acid by engineering the electronic structure of RuO<sub>2</sub>.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 10","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202213304","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 18

Abstract

It is a great challenge to design active and durable oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) electrolyzer due to the high dissolution of electrocatalysts in acidic solution. Herein, the Nd-doped RuO2 (Nd0.1RuOx) is developed for enhanced oxygen evolution in 0.5 m H2SO4 solution with an overpotential of 211 mV to achieve 10 mA cm−2. The theoretical calculation reveals that the improved activity of Nd0.1RuOx is due to the moderate decrease of d-band center energy, which balances the adsorption and desorption of oxygen intermediates. Moreover, the formation of more high valence state Ru4+ in Nd0.1RuOx is beneficial to the chemical stability of Ru species during the OER process, indicating that the introduction of Nd can effectively suppress the dissolution of Ru in acidic electrolytes. In addition, the PEM electrolyzer using Nd0.1RuOx/CC as the anode can be operated at 10 mA cm−2 stably for 50 h. This study sheds new light on the design of the OER catalysts in acid by engineering the electronic structure of RuO2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用钕掺杂优化氧化钌的电子结构以增强酸性析氧催化
摘要质子交换膜(PEM)电解槽的析氧反应(OER)电催化剂在酸性溶液中具有较高的溶解性,因此设计出高效耐用的析氧反应电催化剂是一个很大的挑战。本文研制了掺钕的RuO2 (Nd0.1RuOx),用于在0.5 m H2SO4溶液中增强析氧,过电位为211 mV,达到10 mA cm−2。理论计算表明,Nd0.1RuOx活性的提高是由于d带中心能的适度降低,平衡了氧中间体的吸附和解吸。此外,在Nd0.1RuOx中形成更多的高价态Ru4+有利于OER过程中Ru物质的化学稳定性,说明Nd的引入可以有效抑制Ru在酸性电解质中的溶解。此外,以Nd0.1RuOx/CC为阳极的PEM电解槽可以在10 mA cm−2下稳定运行50 h。本研究通过对RuO2的电子结构进行工程设计,为酸性OER催化剂的设计提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Synergistic Optimization of Optical Absorption and Charge Separation via Linker Engineering in Covalent Organic Frameworks ZnS/Au Composites Advance Comprehensive Characterization of Low‐Molecular‐Weight Compounds Toward Pharmaceutical Analysis of Traditional Chinese Medicine Electrostatically Self‐Assembled MXene@CIP for Structural Functional Absorber Spanning Microwave to Terahertz Bands Retractable Cages with Continual Change of Cavity Size and High Iodine Capture Ultralight PDMS‐Based Aerogels for Electromagnetic‐Acoustic Wave Absorption in Harsh Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1