{"title":"The biogeochemical cycling of chlorine","authors":"Tyler P. Barnum, John D. Coates","doi":"10.1111/gbi.12513","DOIUrl":null,"url":null,"abstract":"<p>Chlorine has important roles in the Earth's systems. In different forms, it helps balance the charge and osmotic potential of cells, provides energy for microorganisms, mobilizes metals in geologic fluids, alters the salinity of waters, and degrades atmospheric ozone. Despite this importance, there has not been a comprehensive summary of chlorine's geobiology. Here, we unite different areas of recent research to describe a biogeochemical cycle for chlorine. Chlorine enters the biosphere through volcanism and weathering of rocks and is sequestered by subduction and the formation of evaporite sediments from inland seas. In the biosphere, chlorine is converted between solid, dissolved, and gaseous states and in oxidation states ranging from −1 to +7, with the soluble, reduced chloride ion as its most common form. Living organisms and chemical reactions change chlorine's form through oxidation and reduction and the addition and removal of chlorine from organic molecules. Chlorine can be transported through the atmosphere, and the highest oxidation states of chlorine are produced by reactions between sunlight and trace chlorine gases. Partial oxidation of chlorine occurs across the biosphere and creates reactive chlorine species that contribute to the oxidative stress experienced by living cells. A unified view of this chlorine cycle demonstrates connections between chlorine biology, chemistry, and geology that affect life on the Earth.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 5","pages":"634-649"},"PeriodicalIF":2.7000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12513","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Chlorine has important roles in the Earth's systems. In different forms, it helps balance the charge and osmotic potential of cells, provides energy for microorganisms, mobilizes metals in geologic fluids, alters the salinity of waters, and degrades atmospheric ozone. Despite this importance, there has not been a comprehensive summary of chlorine's geobiology. Here, we unite different areas of recent research to describe a biogeochemical cycle for chlorine. Chlorine enters the biosphere through volcanism and weathering of rocks and is sequestered by subduction and the formation of evaporite sediments from inland seas. In the biosphere, chlorine is converted between solid, dissolved, and gaseous states and in oxidation states ranging from −1 to +7, with the soluble, reduced chloride ion as its most common form. Living organisms and chemical reactions change chlorine's form through oxidation and reduction and the addition and removal of chlorine from organic molecules. Chlorine can be transported through the atmosphere, and the highest oxidation states of chlorine are produced by reactions between sunlight and trace chlorine gases. Partial oxidation of chlorine occurs across the biosphere and creates reactive chlorine species that contribute to the oxidative stress experienced by living cells. A unified view of this chlorine cycle demonstrates connections between chlorine biology, chemistry, and geology that affect life on the Earth.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.