Recharge of chondrocyte mitochondria by sustained release of melatonin protects cartilage matrix homeostasis in osteoarthritis

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Pineal Research Pub Date : 2022-06-20 DOI:10.1111/jpi.12815
Yijian Zhang, Mingzhuang Hou, Yang Liu, Tao Liu, Xi Chen, Qin Shi, Dechun Geng, Huilin Yang, Fan He, Xuesong Zhu
{"title":"Recharge of chondrocyte mitochondria by sustained release of melatonin protects cartilage matrix homeostasis in osteoarthritis","authors":"Yijian Zhang,&nbsp;Mingzhuang Hou,&nbsp;Yang Liu,&nbsp;Tao Liu,&nbsp;Xi Chen,&nbsp;Qin Shi,&nbsp;Dechun Geng,&nbsp;Huilin Yang,&nbsp;Fan He,&nbsp;Xuesong Zhu","doi":"10.1111/jpi.12815","DOIUrl":null,"url":null,"abstract":"<p>Recent evidence indicates that the mitochondrial functions of chondrocytes are impaired in the pathogenesis of osteoarthritis (OA). Melatonin can attenuate cartilage degradation through its antioxidant functions. This study aims to investigate whether melatonin could rescue the impaired mitochondrial functions of OA chondrocytes and protect cartilage metabolism. OA chondrocytes showed a compromised matrix synthesis capacity associated with mitochondrial dysfunction and aberrant oxidative stress. In vitro treatments with melatonin promoted the expression of cartilage extracellular matrix (ECM) components, improved adenosine triphosphate production, and attenuated mitochondrial oxidative stress. Mechanistically, either silencing of SOD2 or inhibition of SIRT1 abolished the protective effects of melatonin on mitochondrial functions and ECM synthesis. To achieve a sustained release effect, a melatonin-laden drug delivery system (DDS) was developed and intra-articular injection with DDS successfully improved cartilage matrix degeneration in a posttraumatic rat OA model. These findings demonstrate that melatonin-mediated recharge of mitochondria to rescue the mitochondrial functions of chondrocytes represents a promising therapeutic strategy to protect cartilage from OA.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"73 2","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.12815","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 13

Abstract

Recent evidence indicates that the mitochondrial functions of chondrocytes are impaired in the pathogenesis of osteoarthritis (OA). Melatonin can attenuate cartilage degradation through its antioxidant functions. This study aims to investigate whether melatonin could rescue the impaired mitochondrial functions of OA chondrocytes and protect cartilage metabolism. OA chondrocytes showed a compromised matrix synthesis capacity associated with mitochondrial dysfunction and aberrant oxidative stress. In vitro treatments with melatonin promoted the expression of cartilage extracellular matrix (ECM) components, improved adenosine triphosphate production, and attenuated mitochondrial oxidative stress. Mechanistically, either silencing of SOD2 or inhibition of SIRT1 abolished the protective effects of melatonin on mitochondrial functions and ECM synthesis. To achieve a sustained release effect, a melatonin-laden drug delivery system (DDS) was developed and intra-articular injection with DDS successfully improved cartilage matrix degeneration in a posttraumatic rat OA model. These findings demonstrate that melatonin-mediated recharge of mitochondria to rescue the mitochondrial functions of chondrocytes represents a promising therapeutic strategy to protect cartilage from OA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过持续释放褪黑激素来补充软骨细胞线粒体,保护骨关节炎软骨基质的稳态
最近的证据表明,软骨细胞的线粒体功能在骨关节炎(OA)的发病机制中受损。褪黑素可以通过其抗氧化功能减弱软骨的退化。本研究旨在探讨褪黑素是否能恢复OA软骨细胞线粒体功能受损,保护软骨代谢。OA软骨细胞显示出与线粒体功能障碍和异常氧化应激相关的基质合成能力受损。褪黑激素的体外处理促进了软骨细胞外基质(ECM)成分的表达,改善了三磷酸腺苷的产生,并减轻了线粒体氧化应激。在机制上,沉默SOD2或抑制SIRT1均可消除褪黑素对线粒体功能和ECM合成的保护作用。为了达到缓释效果,研制了一种含有褪黑素的药物传递系统(DDS),并成功地在关节内注射DDS改善了创伤后大鼠OA模型的软骨基质退变。这些发现表明,褪黑素介导的线粒体补充以挽救软骨细胞的线粒体功能是一种有希望的治疗策略,可以保护软骨免受OA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
期刊最新文献
Melatonin Ameliorates Cadmium-Induced Liver Fibrosis Via Modulating Gut Microbiota and Bile Acid Metabolism Issue Information Disruption of Melatonin Signaling Leads to Lipids Accumulation in the Liver of Melatonin Proficient Mice Melatonin Protects Against Cocaine-Induced Blood−Brain Barrier Dysfunction and Cognitive Impairment by Regulating miR-320a-Dependent GLUT1 Expression Timing Matters: Late, but Not Early, Exercise Training Ameliorates MASLD in Part by Modulating the Gut-Liver Axis in Mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1