Shuyang Ma, Caihong Fu, Jianchao Li, Peng Sun, Yang Liu, Zhenjiang Ye, Yoshiro Watanabe, Yongjun Tian
{"title":"Non-stationary effects of multiple drivers on the dynamics of Japanese sardine (Sardinops melanostictus, Clupeidae)","authors":"Shuyang Ma, Caihong Fu, Jianchao Li, Peng Sun, Yang Liu, Zhenjiang Ye, Yoshiro Watanabe, Yongjun Tian","doi":"10.1111/faf.12708","DOIUrl":null,"url":null,"abstract":"<p>Non-stationary driver-response relationships are increasingly being recognized by scientists, underlining that a paradigm shift out of conventional stationary relationships is crucial. Japanese sardine (<i>Sardinops melanostictus</i>, Clupeidae) is a typical small pelagic fish in the northwestern Pacific with considerable fluctuations in productivity, bringing about great economic and ecological concerns. Numerous studies suggest that the population dynamics of Japanese sardine is an integrated process affected by multiple density-dependent, fishing and climatic drivers. However, little has hitherto been done to incorporate the non-stationary effects of multiple drivers, impeding progresses in understanding the population dynamics and in developing management strategies. In this study, we adopted variable coefficients generalized additive models to reveal the non-stationary effects of density dependence, fishing pressure and climatic conditions on the population dynamics of Japanese sardine. Results suggest that the dynamics of Japanese sardine from 1976 to 2018 could be divided into four periods: the 1980s when suitable climatic conditions from strong Siberian High pressure system sustained high abundance; the 1990s when negative density-dependent effects and degrading climatic conditions due to temperature increase led to population collapse; the 2000s when negative triple effects, particularly high fishing pressure, restricted the population increase; and the 2010s when favourable climatic conditions with re-strengthening Siberian High pressure system accompanied by low fishing pressure contributed to the population recovery. The study highlights that precise identifications of population status and climatic conditions are helpful to achieve good trade-offs between resource exploitation and protection and to facilitate ecosystem-based management for Japanese sardine fisheries.</p>","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"24 1","pages":"40-55"},"PeriodicalIF":5.6000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/faf.12708","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 3
Abstract
Non-stationary driver-response relationships are increasingly being recognized by scientists, underlining that a paradigm shift out of conventional stationary relationships is crucial. Japanese sardine (Sardinops melanostictus, Clupeidae) is a typical small pelagic fish in the northwestern Pacific with considerable fluctuations in productivity, bringing about great economic and ecological concerns. Numerous studies suggest that the population dynamics of Japanese sardine is an integrated process affected by multiple density-dependent, fishing and climatic drivers. However, little has hitherto been done to incorporate the non-stationary effects of multiple drivers, impeding progresses in understanding the population dynamics and in developing management strategies. In this study, we adopted variable coefficients generalized additive models to reveal the non-stationary effects of density dependence, fishing pressure and climatic conditions on the population dynamics of Japanese sardine. Results suggest that the dynamics of Japanese sardine from 1976 to 2018 could be divided into four periods: the 1980s when suitable climatic conditions from strong Siberian High pressure system sustained high abundance; the 1990s when negative density-dependent effects and degrading climatic conditions due to temperature increase led to population collapse; the 2000s when negative triple effects, particularly high fishing pressure, restricted the population increase; and the 2010s when favourable climatic conditions with re-strengthening Siberian High pressure system accompanied by low fishing pressure contributed to the population recovery. The study highlights that precise identifications of population status and climatic conditions are helpful to achieve good trade-offs between resource exploitation and protection and to facilitate ecosystem-based management for Japanese sardine fisheries.
期刊介绍:
Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.