{"title":"Mapping and estimating harvest potential of seaweed culture using Worldview-2 Satellite images: a case study in Nusa Lembongan, Bali − Indonesia","authors":"I. Pratama, H. Albasri","doi":"10.1051/ALR/2021015","DOIUrl":null,"url":null,"abstract":"Unreliable information on harvest potential is a persistent challenge for the Indonesian government and industry alike to manage an efficient supply chain of seaweed raw material. The use of remote sensing technology to assess seaweed harvest potential has been scarcely available in the literature. This current research aimed at estimating the harvest potential of seaweed Kappaphycus alvarezii through remote sensing using supervised classification with maximum likelihood (MLC) and contextual editing (CE) methods. This research evaluated the capabilities of different band combinations along with depth invariant index (DII) to enhance the remote sensing accuracy in estimating seaweed harvest potential. The seaweed classification using Worldview-2 imagery was compared with the in-situ references (ground-truthing). The potential data bias resulted from different imagery acquisition timestamps with the in-situ measurement was kept minimal as both data time stamps were ten days apart and within the same seaweed culture cycle. The average dry weight of all seaweed samples collected during the research was 924 ± 278.91 g/m2 with culture ages between 1 and 40 days. The classification results based on MLC+CE with a 5-band combination method without DII showed a better correlation and closer fit with the in-situ references compared to the other methods, with an overall accuracy of 79.05% and Tau coefficient value of 0.75. The estimated total harvest potential based on the combined seaweed classes was 531.26 ± 250.29 tons dry weight.","PeriodicalId":55491,"journal":{"name":"Aquatic Living Resources","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Living Resources","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1051/ALR/2021015","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 3
Abstract
Unreliable information on harvest potential is a persistent challenge for the Indonesian government and industry alike to manage an efficient supply chain of seaweed raw material. The use of remote sensing technology to assess seaweed harvest potential has been scarcely available in the literature. This current research aimed at estimating the harvest potential of seaweed Kappaphycus alvarezii through remote sensing using supervised classification with maximum likelihood (MLC) and contextual editing (CE) methods. This research evaluated the capabilities of different band combinations along with depth invariant index (DII) to enhance the remote sensing accuracy in estimating seaweed harvest potential. The seaweed classification using Worldview-2 imagery was compared with the in-situ references (ground-truthing). The potential data bias resulted from different imagery acquisition timestamps with the in-situ measurement was kept minimal as both data time stamps were ten days apart and within the same seaweed culture cycle. The average dry weight of all seaweed samples collected during the research was 924 ± 278.91 g/m2 with culture ages between 1 and 40 days. The classification results based on MLC+CE with a 5-band combination method without DII showed a better correlation and closer fit with the in-situ references compared to the other methods, with an overall accuracy of 79.05% and Tau coefficient value of 0.75. The estimated total harvest potential based on the combined seaweed classes was 531.26 ± 250.29 tons dry weight.
期刊介绍:
Aquatic Living Resources publishes original research papers, review articles and propective notes dealing with all exploited (i.e. fished or farmed) living resources in marine, brackish and freshwater environments.
Priority is given to ecosystem-based approaches to the study of fishery and aquaculture social-ecological systems, including biological, ecological, economic and social dimensions.
Research on the development of interdisciplinary methods and tools which can usefully support the design, implementation and evaluation of alternative management strategies for fisheries and/or aquaculture systems at different scales is particularly welcome by the journal. This includes the exploration of scenarios and strategies for the conservation of aquatic biodiversity and research relating to the development of integrated assessment approaches aimed at ensuring sustainable and high quality uses of aquatic living resources.