Enrichment dynamics for advanced reactor HALEU support

IF 0.9 Q3 NUCLEAR SCIENCE & TECHNOLOGY EPJ Nuclear Sciences & Technologies Pub Date : 2021-01-01 DOI:10.1051/epjn/2021021
Amanda M. Bachmann, R. Fairhurst-Agosta, Zoë Richter, Nathan P. Ryan, Madicken Munk
{"title":"Enrichment dynamics for advanced reactor HALEU support","authors":"Amanda M. Bachmann, R. Fairhurst-Agosta, Zoë Richter, Nathan P. Ryan, Madicken Munk","doi":"10.1051/epjn/2021021","DOIUrl":null,"url":null,"abstract":"Transitioning to High Assay Low Enriched Uranium-fueled reactors will alter the material requirements of the current nuclear fuel cycle, in terms of the mass of enriched uranium and Separative Work Unit capacity. This work simulates multiple fuel cycle scenarios using Cyclus to compare how the type of the advanced reactor deployed and the energy growth demand affect the material requirements of the transition to High Assay Low Enriched Uranium-fueled reactors. Fuel cycle scenarios considered include the current fleet of Light Water Reactors in the U.S. as well as a no-growth and a 1% growth transition to either the Ultra Safe Nuclear Corporation Micro Modular Reactor or the X-energy Xe-100 reactor from the current fleet of U.S. Light Water Reactors. This work explored parameters of interest including the number of advanced reactors deployed, the mass of enriched uranium sent to the reactors, and the Separative Work Unit capacity required to enrich natural uranium for the reactors. Deploying Micro Modular Reactors requires a higher average mass and Separative Work Unit capacity than deploying Xe-100 reactors, and a lower enriched uranium mass and a higher Separative Work Unity capacity than required to fuel Light Water Reactors before the transition. Fueling Xe-100 reactors requires less enriched uranium and Separative Work Unit capacity than fueling Light Water Reactors before the transition.","PeriodicalId":44454,"journal":{"name":"EPJ Nuclear Sciences & Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Nuclear Sciences & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjn/2021021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Transitioning to High Assay Low Enriched Uranium-fueled reactors will alter the material requirements of the current nuclear fuel cycle, in terms of the mass of enriched uranium and Separative Work Unit capacity. This work simulates multiple fuel cycle scenarios using Cyclus to compare how the type of the advanced reactor deployed and the energy growth demand affect the material requirements of the transition to High Assay Low Enriched Uranium-fueled reactors. Fuel cycle scenarios considered include the current fleet of Light Water Reactors in the U.S. as well as a no-growth and a 1% growth transition to either the Ultra Safe Nuclear Corporation Micro Modular Reactor or the X-energy Xe-100 reactor from the current fleet of U.S. Light Water Reactors. This work explored parameters of interest including the number of advanced reactors deployed, the mass of enriched uranium sent to the reactors, and the Separative Work Unit capacity required to enrich natural uranium for the reactors. Deploying Micro Modular Reactors requires a higher average mass and Separative Work Unit capacity than deploying Xe-100 reactors, and a lower enriched uranium mass and a higher Separative Work Unity capacity than required to fuel Light Water Reactors before the transition. Fueling Xe-100 reactors requires less enriched uranium and Separative Work Unit capacity than fueling Light Water Reactors before the transition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进反应堆低浓铀支持的富集动力学
过渡到高含量低浓缩铀燃料反应堆将改变当前核燃料循环的材料要求,就浓缩铀的质量和分离功单位容量而言。本研究使用Cyclus模拟了多种燃料循环情景,以比较先进反应堆的部署类型和能源增长需求如何影响向高含量低浓缩铀燃料反应堆过渡的材料需求。考虑的燃料循环情景包括美国现有的轻水反应堆,以及向超安全核公司微型模块化反应堆或美国现有轻水反应堆的x -能源Xe-100反应堆过渡的零增长和1%增长。这项工作探讨了一些感兴趣的参数,包括部署的先进反应堆的数量、送往反应堆的浓缩铀的质量,以及为反应堆浓缩天然铀所需的分离工作单元容量。与部署Xe-100反应堆相比,部署微型模块化反应堆需要更高的平均质量和分离功容量,并且与过渡前的轻水反应堆相比,需要更低的浓缩铀质量和更高的分离功容量。与转型前的轻水反应堆相比,为Xe-100反应堆提供燃料所需的浓缩铀和分离工作单元容量更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Nuclear Sciences & Technologies
EPJ Nuclear Sciences & Technologies NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
1.00
自引率
20.00%
发文量
18
审稿时长
10 weeks
期刊最新文献
Technical note: stable and unstable reactors Templates of expected measurement uncertainties for neutron-induced capture and charged-particle production cross section observables Templates of expected measurement uncertainties for (n, xn) cross sections Templates of expected measurement uncertainties for total neutron cross-section observables Templates of expected measurement uncertainties for prompt fission neutron spectra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1