The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction†

EES catalysis Pub Date : 2023-08-22 DOI:10.1039/D3EY00201B
Rebecca K. Pittkowski, Christian M. Clausen, Qinyi Chen, Dragos Stoian, Wouter van Beek, Jan Bucher, Rahel L. Welten, Nicolas Schlegel, Jette K. Mathiesen, Tobias M. Nielsen, Jia Du, Asger W. Rosenkranz, Espen D. Bøjesen, Jan Rossmeisl, Kirsten M. Ø. Jensen and Matthias Arenz
{"title":"The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction†","authors":"Rebecca K. Pittkowski, Christian M. Clausen, Qinyi Chen, Dragos Stoian, Wouter van Beek, Jan Bucher, Rahel L. Welten, Nicolas Schlegel, Jette K. Mathiesen, Tobias M. Nielsen, Jia Du, Asger W. Rosenkranz, Espen D. Bøjesen, Jan Rossmeisl, Kirsten M. Ø. Jensen and Matthias Arenz","doi":"10.1039/D3EY00201B","DOIUrl":null,"url":null,"abstract":"<p >High entropy alloys (HEAs) are an important new material class with significant application potential in catalysis and electrocatalysis. The entropy-driven formation of HEA materials requires high temperatures and controlled cooling rates. However, catalysts in general also require highly dispersed materials, <em>i.e.</em>, nanoparticles. Only then a favorable utilization of the expensive raw materials can be achieved. Several recently reported HEA nanoparticle synthesis strategies, therefore, avoid the high-temperature regime to prevent particle growth. In our work, we investigate a system of five noble metal single-source precursors with superior catalytic activity for the oxygen reduction reaction. Combining <em>in situ</em> X-ray powder diffraction with multi-edge X-ray absorption spectroscopy, we address the fundamental question of how single-phase HEA nanoparticles can form at low temperatures. It is demonstrated that the formation of HEA nanoparticles is governed by stochastic principles and the inhibition of precursor mobility during the formation process favors the formation of a single phase. The proposed formation principle is supported by simulations of the nanoparticle formation in a randomized process, rationalizing the experimentally found differences between two-element and multi-element metal precursor mixtures.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 950-960"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/ey/d3ey00201b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High entropy alloys (HEAs) are an important new material class with significant application potential in catalysis and electrocatalysis. The entropy-driven formation of HEA materials requires high temperatures and controlled cooling rates. However, catalysts in general also require highly dispersed materials, i.e., nanoparticles. Only then a favorable utilization of the expensive raw materials can be achieved. Several recently reported HEA nanoparticle synthesis strategies, therefore, avoid the high-temperature regime to prevent particle growth. In our work, we investigate a system of five noble metal single-source precursors with superior catalytic activity for the oxygen reduction reaction. Combining in situ X-ray powder diffraction with multi-edge X-ray absorption spectroscopy, we address the fundamental question of how single-phase HEA nanoparticles can form at low temperatures. It is demonstrated that the formation of HEA nanoparticles is governed by stochastic principles and the inhibition of precursor mobility during the formation process favors the formation of a single phase. The proposed formation principle is supported by simulations of the nanoparticle formation in a randomized process, rationalizing the experimentally found differences between two-element and multi-element metal precursor mixtures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
越多越好:关于形成的单相高熵合金纳米颗粒作为氧还原反应的催化剂†
高熵合金(HEAs)是一类重要的新型材料,在催化和电催化领域具有重要的应用潜力。HEA材料的熵驱动形成需要高温和控制冷却速率。然而,催化剂通常也需要高度分散的材料,即纳米颗粒。只有这样,才能实现对昂贵原材料的有利利用。因此,最近报道的几种HEA纳米颗粒合成策略避免了高温状态以防止颗粒生长。在我们的工作中,我们研究了一个由五种贵金属单源前驱体组成的系统,它们对氧还原反应具有优异的催化活性。结合原位x射线粉末衍射和多边x射线吸收光谱,我们解决了单相HEA纳米颗粒如何在低温下形成的基本问题。结果表明,HEA纳米颗粒的形成遵循随机规律,在形成过程中抑制前驱体的迁移率有利于形成单相。本文提出的形成原理得到了随机过程纳米颗粒形成模拟的支持,合理地解释了实验发现的双元素和多元素金属前驱体混合物之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Correction: High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO2 nanomembrane gas flow-through reactor Embedding the intermetallic Pt5Ce alloy in mesopores through Pt–C coordination layer interactions as a stable electrocatalyst for the oxygen reduction reaction† Efficient CO2-to-CO conversion in dye-sensitized photocatalytic systems enabled by electrostatically-driven catalyst binding† Green energy driven methane conversion under mild conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1