Multiobjective aerodynamic shape optimization of NACA0012 airfoil based mesh morphing

R. Maani, Soufiane Elouardi, B. Radi, A. Hami
{"title":"Multiobjective aerodynamic shape optimization of NACA0012 airfoil based mesh morphing","authors":"R. Maani, Soufiane Elouardi, B. Radi, A. Hami","doi":"10.1051/smdo/2020006","DOIUrl":null,"url":null,"abstract":"The actual use of computational fluid dynamics (CFD) by aerospace companies is the trade-off result between the perceived costs and benefits. Computational costs are restricted to swamp the design process even if the benefits are widely recognized. The need for fast turnaround, counting the setup time, is also crucial. CFD integrates mathematical relations and algorithms to analyze and solve fluid flow problems. CFD analysis of an airfoil produces results such as the lift and drag forces that determine the performance of an airfoil. Thus, optimizing these aerodynamic performances has proved extremely valuable in practice. The aim of this paper is to model a transonic, compressible and turbulent flow over a NACA 0012 airfoil, using a density based implicit solver, for which a comparison and a validation will be made throught the published experimental data. The numerical results show that the predicted aerodynamic coefficients are in a satisfying agreement with experimental data. Then an aerodynamic shape optimization algorithm, based on a multiobjective algorithm that is an extension of the Backtracking Search Algorithm which was initially developed for single-objective optimization problems only, was used in order to obtain an improved performance control of the aerodynamic coefficients of the optimized airfoil.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/smdo/2020006","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

The actual use of computational fluid dynamics (CFD) by aerospace companies is the trade-off result between the perceived costs and benefits. Computational costs are restricted to swamp the design process even if the benefits are widely recognized. The need for fast turnaround, counting the setup time, is also crucial. CFD integrates mathematical relations and algorithms to analyze and solve fluid flow problems. CFD analysis of an airfoil produces results such as the lift and drag forces that determine the performance of an airfoil. Thus, optimizing these aerodynamic performances has proved extremely valuable in practice. The aim of this paper is to model a transonic, compressible and turbulent flow over a NACA 0012 airfoil, using a density based implicit solver, for which a comparison and a validation will be made throught the published experimental data. The numerical results show that the predicted aerodynamic coefficients are in a satisfying agreement with experimental data. Then an aerodynamic shape optimization algorithm, based on a multiobjective algorithm that is an extension of the Backtracking Search Algorithm which was initially developed for single-objective optimization problems only, was used in order to obtain an improved performance control of the aerodynamic coefficients of the optimized airfoil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网格变形的NACA0012翼型多目标气动外形优化
航空航天公司对计算流体动力学(CFD)的实际使用是感知成本和收益之间的权衡结果。即使好处得到广泛认可,计算成本也仅限于淹没设计过程。快速周转的需求,计算设置时间,也是至关重要的。CFD集成了数学关系和算法来分析和解决流体流动问题。翼型的CFD分析产生的结果,如升力和阻力,决定翼型的性能。因此,优化这些气动性能在实践中被证明是非常有价值的。本文的目的是模拟跨音速,可压缩和紊流在NACA 0012翼型,使用基于密度的隐式求解器,其中比较和验证将通过发表的实验数据进行。数值计算结果表明,预测的气动系数与实验数据吻合较好。为了对优化后的翼型气动系数进行更好的性能控制,采用了一种基于多目标算法的气动形状优化算法,该算法是对最初仅用于单目标优化问题的回溯搜索算法的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
期刊最新文献
A novel approach for noise prediction using Neural network trained with an efficient optimization technique Topology optimization of engine bracket arm using BESO Integration of digital imagery for topology optimization A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results Real-time fast learning hardware implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1