Stage reduced counter-rotating axial compressor for jet engine

F. Ferdaus, Nitish Kumar, G. Sakthivel, N. Raghukiran
{"title":"Stage reduced counter-rotating axial compressor for jet engine","authors":"F. Ferdaus, Nitish Kumar, G. Sakthivel, N. Raghukiran","doi":"10.1051/SMDO/2021006","DOIUrl":null,"url":null,"abstract":"Variation in the states of system, mass flow and pressure are some of the disturbances which are experienced by the compressors in the jet engine under working condition. One of the main factors that influence the efficiency of a jet engine is the pressure ratio. In order to achieve the required pressure ratio, we should have relatively a greater number of stages in the compressor that leads to an increase in the weight of the engine. The stator and rotor are the essential parts of an aircraft's axial compressor. CFD is used in order to evaluate the pressure ratio. In this paper, we are going to analyze a three-stage compressor instead of an actual six-stage compressor. The mass flow rate inside the control system can be used to maintain the stability of the system. Compressor weight and pressure ratio at each stage can be reduced if we have a clockwise and anti-clockwise rotating rotor. With the use of a universal gear system, the two clockwise rotors and one anti-clockwise rotor were analyzed. The main outlook of this work is to show the maximum pressure ratio of the compressor at the outlet with our desired configurations. In conclusion, it was shown that the weight of the aircraft engine can be effectively reduced.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/SMDO/2021006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Variation in the states of system, mass flow and pressure are some of the disturbances which are experienced by the compressors in the jet engine under working condition. One of the main factors that influence the efficiency of a jet engine is the pressure ratio. In order to achieve the required pressure ratio, we should have relatively a greater number of stages in the compressor that leads to an increase in the weight of the engine. The stator and rotor are the essential parts of an aircraft's axial compressor. CFD is used in order to evaluate the pressure ratio. In this paper, we are going to analyze a three-stage compressor instead of an actual six-stage compressor. The mass flow rate inside the control system can be used to maintain the stability of the system. Compressor weight and pressure ratio at each stage can be reduced if we have a clockwise and anti-clockwise rotating rotor. With the use of a universal gear system, the two clockwise rotors and one anti-clockwise rotor were analyzed. The main outlook of this work is to show the maximum pressure ratio of the compressor at the outlet with our desired configurations. In conclusion, it was shown that the weight of the aircraft engine can be effectively reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喷气发动机级减速器反向旋转轴向压气机
系统状态、质量流量和压力的变化是喷气发动机压气机在工作状态下所经历的一些扰动。影响喷气发动机效率的主要因素之一是压力比。为了达到所需的压力比,我们应该在压气机中有相对较多的级数,这导致发动机重量的增加。定子和转子是飞机轴向压气机的重要部件。利用CFD计算压力比。在本文中,我们将分析一个三级压缩机,而不是实际的六级压缩机。控制系统内部的质量流量可以用来维持系统的稳定性。如果我们有一个顺时针和逆时针旋转的转子,可以减少压缩机的重量和每个阶段的压力比。采用万向齿轮系统,对两个顺时针转子和一个逆时针转子进行了分析。这项工作的主要前景是显示我们期望配置的出口压缩机的最大压力比。综上所述,可以有效地减轻飞机发动机的重量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
期刊最新文献
A novel approach for noise prediction using Neural network trained with an efficient optimization technique Topology optimization of engine bracket arm using BESO Integration of digital imagery for topology optimization A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results Real-time fast learning hardware implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1