Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink
{"title":"Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink","authors":"S. R. Ahammed, A. S. Praveen","doi":"10.1051/smdo/2021007","DOIUrl":null,"url":null,"abstract":"Fabrication of electronic circuits and the effects of optimization parameters on electrical conductivity of the printed circuits fabricated by direct ink writing method (D.I.W); one of the novel methods in 3D printing technologies is discussed in this work. This paper focuses on fabrication of electronic circuits using F-MWCNT/PVA conductive ink and analyses the effect of input printing process parameters namely nozzle diameter, extrusion pressure, printing speed on evaluating the electrical conductivity. Box–Behnken approach is followed to generate the levels of experiments and the performance of developed model is assessed using ANOVA. Response surface method is incorporated to find the influencing parameters on electrical conductivity response. Two-point probe measurement method is performed to analyse the output response of the printed electronic circuits. Optimized printing parameters such as nozzle diameter of 0.8 mm, extrusion pressure of 0.1 MPa and printing speed of 4 mm/sec are found to be the best the for printing electronic circuits with high electrical conductivity.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
Fabrication of electronic circuits and the effects of optimization parameters on electrical conductivity of the printed circuits fabricated by direct ink writing method (D.I.W); one of the novel methods in 3D printing technologies is discussed in this work. This paper focuses on fabrication of electronic circuits using F-MWCNT/PVA conductive ink and analyses the effect of input printing process parameters namely nozzle diameter, extrusion pressure, printing speed on evaluating the electrical conductivity. Box–Behnken approach is followed to generate the levels of experiments and the performance of developed model is assessed using ANOVA. Response surface method is incorporated to find the influencing parameters on electrical conductivity response. Two-point probe measurement method is performed to analyse the output response of the printed electronic circuits. Optimized printing parameters such as nozzle diameter of 0.8 mm, extrusion pressure of 0.1 MPa and printing speed of 4 mm/sec are found to be the best the for printing electronic circuits with high electrical conductivity.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).