CFD modelling of airborne virus diffusion characteristics in a negative pressure room with mixed mode ventilation

Chakka Anuraghava, K. Abhiram, Vengalathur Naveen Sai Reddy, H. Rajan
{"title":"CFD modelling of airborne virus diffusion characteristics in a negative pressure room with mixed mode ventilation","authors":"Chakka Anuraghava, K. Abhiram, Vengalathur Naveen Sai Reddy, H. Rajan","doi":"10.1051/SMDO/2021001","DOIUrl":null,"url":null,"abstract":"COVID-19 caused by severe acute respiratory syndrome (SARS) has accounted for huge collateral damage and as the virus is spreading faster and faster this study deals with isolation rooms or negative pressure rooms with 12 or more air changes per hour and maintaining a pressure difference of 2.5 pa which can help in reducing the transmission of the virus from affected to not affected persons. ANSI/ASHRAE/ASHE Standard 170–2008 recommendations are followed for hospital applications, to facilitate effective ventilation. These negative pressure rooms prevent the spread of the contaminated particles to the surroundings and by creating a negative pressure in the room whenever the door is opened the atmospheric air is sucked in and not the one which is present inside the room. The Computational fluid dynamics simulations are performed to investigate the diffusion of airbone virus inside a negative pressure room with mixed mode ventilation system. It was identified that the mixed mode ventilation system is more effective in controlling the spread of virus droplets inside the room","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/SMDO/2021001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

COVID-19 caused by severe acute respiratory syndrome (SARS) has accounted for huge collateral damage and as the virus is spreading faster and faster this study deals with isolation rooms or negative pressure rooms with 12 or more air changes per hour and maintaining a pressure difference of 2.5 pa which can help in reducing the transmission of the virus from affected to not affected persons. ANSI/ASHRAE/ASHE Standard 170–2008 recommendations are followed for hospital applications, to facilitate effective ventilation. These negative pressure rooms prevent the spread of the contaminated particles to the surroundings and by creating a negative pressure in the room whenever the door is opened the atmospheric air is sucked in and not the one which is present inside the room. The Computational fluid dynamics simulations are performed to investigate the diffusion of airbone virus inside a negative pressure room with mixed mode ventilation system. It was identified that the mixed mode ventilation system is more effective in controlling the spread of virus droplets inside the room
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合式通风负压室内空气中病毒扩散特性的CFD模拟
由严重急性呼吸系统综合症(SARS)引起的COVID-19已经造成了巨大的间接损害,随着病毒传播速度越来越快,本研究涉及隔离室或负压室,每小时换气12次或更多,并保持2.5 pa的压力差,这有助于减少病毒从感染者到非感染者的传播。医院应用遵循ANSI/ASHRAE/ASHE标准170-2008建议,以促进有效的通风。这些负压房间防止污染颗粒扩散到周围环境,并通过在房间内创造负压,每当门打开时,大气空气被吸入,而不是房间内存在的空气。采用计算流体动力学方法,研究了空气病毒在混合通风系统负压室内的扩散。结果表明,混合通风系统对控制病毒飞沫在室内的传播更为有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
期刊最新文献
A novel approach for noise prediction using Neural network trained with an efficient optimization technique Topology optimization of engine bracket arm using BESO Integration of digital imagery for topology optimization A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results Real-time fast learning hardware implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1