Karthick Jairam, Feroskhan Mohammed Musthafa, Kishorre Annanth Vijayan, M. Renganathan
{"title":"Computational investigations on port injected DEE in a biogas inducted HCCI engine","authors":"Karthick Jairam, Feroskhan Mohammed Musthafa, Kishorre Annanth Vijayan, M. Renganathan","doi":"10.1051/smdo/2021010","DOIUrl":null,"url":null,"abstract":"Owing to global climate change and atmospheric pollution, several automobile manufacturing companies look for homogeneously charged engines to satisfy strict emission levels. In the present work, computational fluid dynamics (CFD) investigations have been carried out to showcase the homogeneity of air-fuel mixture formation by port fuel injection and manifold fuel injection of a Biogas-Diethyl Ether (DEE) homogeneous charge compression engine (HCCI). The distributions of equivalence ratio based on fuel and the total air-fuel mixture is formulated and found to be in close agreement with the literature. Earlier investigations have shown that the use of biogas as a single fuel causes lower power output compared to other alternative fuels. Hence the present study is planned to use biogas with DEE as an ignition improver via fuel injection systems to find the best suitable fuel injection system. In the mesh independent study, port injection mode is found to perform better against the manifold injection mode when compared with the homogeneity factor. Iso-volumes of excess-air ratio based on biogas, diethyl ether and other variables such as the density, turbulent kinetic energy, turbulent dissipation rate of air-fuel mixture influencing the homogeneity and equivalence ratio are studied for better in-cylinder distribution under the port injection mode.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Owing to global climate change and atmospheric pollution, several automobile manufacturing companies look for homogeneously charged engines to satisfy strict emission levels. In the present work, computational fluid dynamics (CFD) investigations have been carried out to showcase the homogeneity of air-fuel mixture formation by port fuel injection and manifold fuel injection of a Biogas-Diethyl Ether (DEE) homogeneous charge compression engine (HCCI). The distributions of equivalence ratio based on fuel and the total air-fuel mixture is formulated and found to be in close agreement with the literature. Earlier investigations have shown that the use of biogas as a single fuel causes lower power output compared to other alternative fuels. Hence the present study is planned to use biogas with DEE as an ignition improver via fuel injection systems to find the best suitable fuel injection system. In the mesh independent study, port injection mode is found to perform better against the manifold injection mode when compared with the homogeneity factor. Iso-volumes of excess-air ratio based on biogas, diethyl ether and other variables such as the density, turbulent kinetic energy, turbulent dissipation rate of air-fuel mixture influencing the homogeneity and equivalence ratio are studied for better in-cylinder distribution under the port injection mode.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).