Optimization of friction STIR welded AA6061 + SiCp metal matrix composite to increase joint tensile strength and reduce defects

N. Dilip Raja, R. Naren Shankar
{"title":"Optimization of friction STIR welded AA6061 + SiCp metal matrix composite to increase joint tensile strength and reduce defects","authors":"N. Dilip Raja, R. Naren Shankar","doi":"10.1051/smdo/2021028","DOIUrl":null,"url":null,"abstract":"Friction stir welding has been used in automobiles, locomotive, and aircraft structures. This metal joining process exhibits defects like kissing bonds, micropores, and tunnels. Factors like the joining material, joint thickness, tool geometry, and operating parameters control the defects in friction stir welding. The parameters like tool rotation, tool pass speed, and tool force have a greater influence on the joint quality. In this study, these parameters are considered to augment the strength of the joint and minimize defects. The metal matrix composite consisting of AA6061 matrix and 10 wt. % SiCp reinforcement is joined used FSW. The weld parameters were varied between 731 and 1068 rpm tool rotation speed, 0.33 and 1.17 mm/s tool pass speed, and 11 and 28 MPa tool force. The joint strength varied from 165 MPa to 244 MPa. The numerical analysis using ANOVA revealed that compared between the three parameters, the tool force had greater control over the tensile strength of the joint. After optimization, the joint was made at a tool rotation speed of 910 rpm, tool pass speed of 0.77 mm/s, and tool force of 22.33 MPa. The tensile strength increased to 249 MPa after using the optimized weld parameters. The number of defects in the joint was reduced after using the optimized weld parameters.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Friction stir welding has been used in automobiles, locomotive, and aircraft structures. This metal joining process exhibits defects like kissing bonds, micropores, and tunnels. Factors like the joining material, joint thickness, tool geometry, and operating parameters control the defects in friction stir welding. The parameters like tool rotation, tool pass speed, and tool force have a greater influence on the joint quality. In this study, these parameters are considered to augment the strength of the joint and minimize defects. The metal matrix composite consisting of AA6061 matrix and 10 wt. % SiCp reinforcement is joined used FSW. The weld parameters were varied between 731 and 1068 rpm tool rotation speed, 0.33 and 1.17 mm/s tool pass speed, and 11 and 28 MPa tool force. The joint strength varied from 165 MPa to 244 MPa. The numerical analysis using ANOVA revealed that compared between the three parameters, the tool force had greater control over the tensile strength of the joint. After optimization, the joint was made at a tool rotation speed of 910 rpm, tool pass speed of 0.77 mm/s, and tool force of 22.33 MPa. The tensile strength increased to 249 MPa after using the optimized weld parameters. The number of defects in the joint was reduced after using the optimized weld parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化搅拌摩擦焊AA6061 + SiCp金属基复合材料,提高接头抗拉强度,减少缺陷
搅拌摩擦焊已应用于汽车、机车和飞机结构。这种金属连接工艺表现出亲和键、微孔和隧道等缺陷。连接材料、接头厚度、刀具几何形状和操作参数等因素控制着搅拌摩擦焊的缺陷。刀具转速、刀道速度、刀力等参数对接头质量影响较大。在这项研究中,这些参数被认为是增加接头的强度和减少缺陷。由AA6061基体和10wt组成的金属基复合材料。% SiCp强化用FSW加入。在刀具转速为731 ~ 1068 rpm、刀具通过速度为0.33 ~ 1.17 mm/s、刀具力为11 ~ 28 MPa时,焊缝参数发生了变化。接头强度在165 ~ 244 MPa之间变化。采用方差分析的数值分析结果表明,刀具力对接头的抗拉强度有较大的控制作用。优化后,在刀具转速为910 rpm、刀具通过速度为0.77 mm/s、刀具力为22.33 MPa的条件下加工接头。采用优化后的焊接参数后,其抗拉强度达到249 MPa。采用优化后的焊接参数后,接头缺陷数量明显减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
期刊最新文献
A novel approach for noise prediction using Neural network trained with an efficient optimization technique Topology optimization of engine bracket arm using BESO Integration of digital imagery for topology optimization A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results Real-time fast learning hardware implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1