K. Karunamurthy, M. Feroskhan, G. Suganya, Ismail Saleel
{"title":"Prediction and optimization of performance and emission characteristics of a dual fuel engine using machine learning","authors":"K. Karunamurthy, M. Feroskhan, G. Suganya, Ismail Saleel","doi":"10.1051/smdo/2022002","DOIUrl":null,"url":null,"abstract":"The current research in engine, fuel and lubricant development are aiming towards environmental protection by reducing the harmful emissions. The testing under various conditions becomes mandatory before releasing product to meet the sustainable development goals of United Nations. This experimentation and testing under various operating conditions is time-consuming and tiresome process; it also leads to wastage of manpower, money, precious time and scarce resources. Intelligent techniques like Machine Learning (ML) has proven it's usage in almost all domains, trying to simulate the results as trained. This advantage is used to predict the performance and emission characteristics of a dual fuel engine. In this study, the experimental data are obtained from a single cylinder CI engine by operating under dual fuel mode using biogas and diesel as primary and secondary fuel respectively. The input parameters such as biogas flow rate, methane fraction (MF), torque and intake temperature are considered to predict the output parameters. The output parameters of the study includes performance attributes Brake thermal efficiency, secondary fuel energy ratio, and emissions attributes HC, CO, NOx and smoke. The proposed model uses Random forest Regressor and is trained using 324 distinct experiences recorded through physical experimentation. The model is validated using R2 score which is observed to be 0.997 for the given dataset while trained and tested in the ratio of 85:15. The outputs of the model are used to compute the output data for any new values of input attributes. The optimized values of the input parameters that could give maximum thermal efficiency and minimum emission is found using Lagrangian optimization. The optimized values are 12.48 Nm torque, 8.29 lit/min of biogas flow rate, methane fraction of 72.8%, intake temperature of 68.3 °C.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2022002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
The current research in engine, fuel and lubricant development are aiming towards environmental protection by reducing the harmful emissions. The testing under various conditions becomes mandatory before releasing product to meet the sustainable development goals of United Nations. This experimentation and testing under various operating conditions is time-consuming and tiresome process; it also leads to wastage of manpower, money, precious time and scarce resources. Intelligent techniques like Machine Learning (ML) has proven it's usage in almost all domains, trying to simulate the results as trained. This advantage is used to predict the performance and emission characteristics of a dual fuel engine. In this study, the experimental data are obtained from a single cylinder CI engine by operating under dual fuel mode using biogas and diesel as primary and secondary fuel respectively. The input parameters such as biogas flow rate, methane fraction (MF), torque and intake temperature are considered to predict the output parameters. The output parameters of the study includes performance attributes Brake thermal efficiency, secondary fuel energy ratio, and emissions attributes HC, CO, NOx and smoke. The proposed model uses Random forest Regressor and is trained using 324 distinct experiences recorded through physical experimentation. The model is validated using R2 score which is observed to be 0.997 for the given dataset while trained and tested in the ratio of 85:15. The outputs of the model are used to compute the output data for any new values of input attributes. The optimized values of the input parameters that could give maximum thermal efficiency and minimum emission is found using Lagrangian optimization. The optimized values are 12.48 Nm torque, 8.29 lit/min of biogas flow rate, methane fraction of 72.8%, intake temperature of 68.3 °C.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).