Design and analysis of shell and tube heat exchanger

Erica Jacqueline Fernandes, S. Krishanmurthy
{"title":"Design and analysis of shell and tube heat exchanger","authors":"Erica Jacqueline Fernandes, S. Krishanmurthy","doi":"10.1051/smdo/2022005","DOIUrl":null,"url":null,"abstract":"The demand for consumption of energy in industries has made designers to build efficient heat transfer exchangers. One of the most used heat exchangers which supports this is the shell and tube heat exchangers which are built for effective heat transfer. These heat exchangers are widely utilized in the HVAC industries especially in chiller plants due to their large surface for heat transfer. So, design of these chillers is influenced by the selection of material. This research paper discusses the design and analysis of shell and tube heat exchangers by considering different material and their ability to transfer heat from the surface. So, baffles play an important role to analyze the performance of the heat exchangers and it is possible to improve their heat transfer capabilities. So, in this research paper baffle spacing and its effect on heat transfer has been analyzed using CFD analysis and compared these results with the theoretical analysis. The Design and modelling of the heat exchanger have been modelled using PTC Creo parametric and using ANSYS Fluent CFD analysis have been carried out considering copper, aluminum, and steel as the materials. From this analysis it can be stated that copper has performed well as compared to aluminum and steel by using minimum baffle spacing.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2022005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

The demand for consumption of energy in industries has made designers to build efficient heat transfer exchangers. One of the most used heat exchangers which supports this is the shell and tube heat exchangers which are built for effective heat transfer. These heat exchangers are widely utilized in the HVAC industries especially in chiller plants due to their large surface for heat transfer. So, design of these chillers is influenced by the selection of material. This research paper discusses the design and analysis of shell and tube heat exchangers by considering different material and their ability to transfer heat from the surface. So, baffles play an important role to analyze the performance of the heat exchangers and it is possible to improve their heat transfer capabilities. So, in this research paper baffle spacing and its effect on heat transfer has been analyzed using CFD analysis and compared these results with the theoretical analysis. The Design and modelling of the heat exchanger have been modelled using PTC Creo parametric and using ANSYS Fluent CFD analysis have been carried out considering copper, aluminum, and steel as the materials. From this analysis it can be stated that copper has performed well as compared to aluminum and steel by using minimum baffle spacing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
管壳式换热器的设计与分析
工业中对能源消耗的需求促使设计人员建造高效的热交换器。最常用的热交换器之一是壳管热交换器,它是为有效的传热而建造的。这些热交换器广泛应用于暖通空调行业,特别是在冷水机组中,由于它们的大表面传热。因此,这些冷却器的设计受到材料选择的影响。本文在考虑不同材料及其表面传热能力的基础上,对管壳式换热器进行了设计与分析。因此,挡板对分析换热器的性能起着重要的作用,可以提高换热器的换热性能。因此,本文采用CFD分析方法对折流板间距及其对换热的影响进行了分析,并与理论分析结果进行了比较。采用PTC Creo参数对换热器的设计和建模进行了建模,并利用ANSYS Fluent对铜、铝和钢三种材料进行了CFD分析。从这个分析可以看出,与铝和钢相比,使用最小的挡板间距,铜的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
期刊最新文献
A novel approach for noise prediction using Neural network trained with an efficient optimization technique Topology optimization of engine bracket arm using BESO Integration of digital imagery for topology optimization A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results Real-time fast learning hardware implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1