T. Ramesh, A. S. Praveen, Praveen Bhaskaran Pillai, S. Salunkhe
{"title":"Numerical simulation of heat sinks with different configurations for high power LED thermal management","authors":"T. Ramesh, A. S. Praveen, Praveen Bhaskaran Pillai, S. Salunkhe","doi":"10.1051/smdo/2022009","DOIUrl":null,"url":null,"abstract":"This study performed a steady-state numerical analysis to understand the temperature in different heat sink configurations for LED applications. Seven heat sink configurations named R, H-6, H-8, H-10, C, C3, and C3E3 were considered. Parameters like input power, number of fins, heat sink configuration were varied, and their influence on LED temperature distribution, heat sink thermal resistance and thermal interface material temperature were studied. The results showed that the temperature distribution of the H-6 heat sink decreased by 46.30% compared with the Cheat sink for an input power of 16 W. The result of the H-6 heat sink shows that the heat sink thermal resistance was decreased by 73.91% compared with the Cheat sink at 16 W. The lowest interface material temperature of 54.11 °C was achieved by the H-6 heat sink when the input power was used 16 W. The H-6 heat sink exhibited better performance due to more surface area with several fins than other heat sinks.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2022009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
This study performed a steady-state numerical analysis to understand the temperature in different heat sink configurations for LED applications. Seven heat sink configurations named R, H-6, H-8, H-10, C, C3, and C3E3 were considered. Parameters like input power, number of fins, heat sink configuration were varied, and their influence on LED temperature distribution, heat sink thermal resistance and thermal interface material temperature were studied. The results showed that the temperature distribution of the H-6 heat sink decreased by 46.30% compared with the Cheat sink for an input power of 16 W. The result of the H-6 heat sink shows that the heat sink thermal resistance was decreased by 73.91% compared with the Cheat sink at 16 W. The lowest interface material temperature of 54.11 °C was achieved by the H-6 heat sink when the input power was used 16 W. The H-6 heat sink exhibited better performance due to more surface area with several fins than other heat sinks.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).