Sahadev M. Jadhav, Arulprakasajothi Mahalingam, Vikas Ugle, L. Kamaraj
{"title":"Increasing the waste heat absorption performance in the refrigeration system using electromagnetic effect","authors":"Sahadev M. Jadhav, Arulprakasajothi Mahalingam, Vikas Ugle, L. Kamaraj","doi":"10.1051/smdo/2022010","DOIUrl":null,"url":null,"abstract":"This paper enables a simulation model for analyzing and predicting magnetic field patterns and their magnetic flux density on the pipe. Different types of arrangements of magnets like series, parallel, and Halbach arrays are utilized and their magnetic flux density and magnetic field intensity are compared on the respective pipes. Electromagnetic field simulation software calculates different magnetic fields and circuit parameters. Using this software, accurate results can be obtained such as the perfect arrangement of magnets and so on. For this experimentation, Neodymium-35 type magnets are used which have appropriate and stable magnetic strength as compared to other magnets. Diffusion absorption refrigeration systems can also be used alternatively in domestic refrigeration, thus replacing conventional vapor compression refrigeration systems. Thus, results obtained by using different magnetic arrangements will be highly beneficial to choose the proper magnetic arrangement in diffusion absorption refrigeration system for various cooling applications.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2022010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper enables a simulation model for analyzing and predicting magnetic field patterns and their magnetic flux density on the pipe. Different types of arrangements of magnets like series, parallel, and Halbach arrays are utilized and their magnetic flux density and magnetic field intensity are compared on the respective pipes. Electromagnetic field simulation software calculates different magnetic fields and circuit parameters. Using this software, accurate results can be obtained such as the perfect arrangement of magnets and so on. For this experimentation, Neodymium-35 type magnets are used which have appropriate and stable magnetic strength as compared to other magnets. Diffusion absorption refrigeration systems can also be used alternatively in domestic refrigeration, thus replacing conventional vapor compression refrigeration systems. Thus, results obtained by using different magnetic arrangements will be highly beneficial to choose the proper magnetic arrangement in diffusion absorption refrigeration system for various cooling applications.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).