Accelerating Gas Escape in Anion Exchange Membrane Water Electrolysis by Gas Diffusion Layers with Hierarchical Grid Gradients

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2023-06-13 DOI:10.1002/anie.202304230
Birou Huang, Dr. Xiaochen Wang, Dr. Wenzheng Li, Prof. Weiguo Tian, Prof. Liang Luo, Prof. Xiaoming Sun, Prof. Gongwei Wang, Prof. Lin Zhuang, Prof. Li Xiao
{"title":"Accelerating Gas Escape in Anion Exchange Membrane Water Electrolysis by Gas Diffusion Layers with Hierarchical Grid Gradients","authors":"Birou Huang,&nbsp;Dr. Xiaochen Wang,&nbsp;Dr. Wenzheng Li,&nbsp;Prof. Weiguo Tian,&nbsp;Prof. Liang Luo,&nbsp;Prof. Xiaoming Sun,&nbsp;Prof. Gongwei Wang,&nbsp;Prof. Lin Zhuang,&nbsp;Prof. Li Xiao","doi":"10.1002/anie.202304230","DOIUrl":null,"url":null,"abstract":"<p>At high current densities, gas bubble escape is the critical factor affecting the mass transport and performance of the electrolyzer. For tight assembly water electrolysis technologies, the gas diffusion layer (GDL) between the catalyst layer (CL) and the flow field plate plays a critical role in gas bubble removal. Herein, we demonstrate that the electrolyzer's mass transport and performance can be significantly improved by simply manipulating the structure of the GDL. Combined with 3D printing technology, ordered nickel GDLs with straight-through pores and adjustable grid sizes are systematically studied. Using an in situ high-speed camera, the gas bubble releasing size and resident time have been observed and analyzed upon the change of the GDL architecture. The results show that a suitable grid size of the GDL can significantly accelerate mass transport by reducing the gas bubble size and the bubble resident time. An adhesive force measurement has further revealed the underlying mechanism. We then proposed and fabricated a novel hierarchical GDL, reaching a current density of 2 A/cm<sup>2</sup> at a cell voltage of 1.95 V and 80 °C, one of the highest single-cell performances in pure-water-fed anion exchange membrane water electrolysis (AEMWE).</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202304230","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

At high current densities, gas bubble escape is the critical factor affecting the mass transport and performance of the electrolyzer. For tight assembly water electrolysis technologies, the gas diffusion layer (GDL) between the catalyst layer (CL) and the flow field plate plays a critical role in gas bubble removal. Herein, we demonstrate that the electrolyzer's mass transport and performance can be significantly improved by simply manipulating the structure of the GDL. Combined with 3D printing technology, ordered nickel GDLs with straight-through pores and adjustable grid sizes are systematically studied. Using an in situ high-speed camera, the gas bubble releasing size and resident time have been observed and analyzed upon the change of the GDL architecture. The results show that a suitable grid size of the GDL can significantly accelerate mass transport by reducing the gas bubble size and the bubble resident time. An adhesive force measurement has further revealed the underlying mechanism. We then proposed and fabricated a novel hierarchical GDL, reaching a current density of 2 A/cm2 at a cell voltage of 1.95 V and 80 °C, one of the highest single-cell performances in pure-water-fed anion exchange membrane water electrolysis (AEMWE).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带梯度网格的气体扩散层加速阴离子交换膜电解中的气体逸出
在高电流密度下,气泡逸出是影响电解槽质量传递和性能的关键因素。对于紧密组装水电解技术,催化剂层(CL)与流场板之间的气体扩散层(GDL)在气泡去除中起着关键作用。在此,我们证明了通过简单地操纵GDL的结构可以显著改善电解槽的质量传递和性能。结合3D打印技术,系统研究了具有直通式孔和可调网格尺寸的有序镍gdl。利用原位高速摄像机,观察和分析了GDL结构变化对气泡释放大小和停留时间的影响。结果表明,适当的栅格尺寸可以通过减小气泡尺寸和气泡停留时间来显著加快质量输运。粘合力测量进一步揭示了其潜在的机理。然后,我们提出并制造了一种新的分层GDL,在1.95 V和80°C的电池电压下,电流密度达到2 a /cm2,这是纯水负离子交换膜电解(AEMWE)中最高的单电池性能之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Reversible Hydrogen Acceptor–Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis A Grafting Hydrogen-bonded Organic Framework for Benchmark Selectivity of C2H2/CO2 Separation under Ambient Conditions A Proteomics Pipeline for Generating Clinical Grade Biomarker Candidates from Data-Independent Acquisition Mass Spectrometry (DIA-MS) Discovery [5]Helicene Based π-Conjugated Macrocycles with Persistent Figure-Eight and Möbius Shapes: Efficient Synthesis, Chiral Resolution and Bright Circularly Polarized Luminescence Formamidinium Incorporates into Rb-based Non-perovskite Phases in Solar Cell Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1