{"title":"A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons","authors":"K. Fukui, T. Yonezawa, H. Shingu","doi":"10.1063/1.1700523","DOIUrl":null,"url":null,"abstract":"In the search for a quantitative correlation between reactivity and electronic configuration of aromatic hydrocarbons, the electron density, at each carbon atom, of the highest occupied π‐orbital in the ground state of the molecule is calculated by means of the LCAO method. Comparing the result of such a calculation on fifteen condensed aromatic hydrocarbons with their chemical reactivities, we find that the position at which the electron density is largest is most readily attacked by electrophilic or oxidizing reagents.It is, therefore, concluded that distinct from other π‐electrons the pair of π‐electrons occupying the highest orbital, which is referred to as frontier electrons, plays a decisive role in chemical activation of these hydrocarbon molecules. The theoretical significance of this discrimination of the frontier electrons in relation to the chemical activation is discussed.","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"36 1","pages":"722-725"},"PeriodicalIF":3.1000,"publicationDate":"1952-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.1700523","citationCount":"1692","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/1.1700523","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1692
Abstract
In the search for a quantitative correlation between reactivity and electronic configuration of aromatic hydrocarbons, the electron density, at each carbon atom, of the highest occupied π‐orbital in the ground state of the molecule is calculated by means of the LCAO method. Comparing the result of such a calculation on fifteen condensed aromatic hydrocarbons with their chemical reactivities, we find that the position at which the electron density is largest is most readily attacked by electrophilic or oxidizing reagents.It is, therefore, concluded that distinct from other π‐electrons the pair of π‐electrons occupying the highest orbital, which is referred to as frontier electrons, plays a decisive role in chemical activation of these hydrocarbon molecules. The theoretical significance of this discrimination of the frontier electrons in relation to the chemical activation is discussed.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.