{"title":"Gutzwiller–RVB theory of high-temperature superconductivity: Results from renormalized mean-field theory and variational Monte Carlo calculations","authors":"B. Edegger, V. N. Muthukumar, C. Gros","doi":"10.1080/00018730701627707","DOIUrl":null,"url":null,"abstract":"We review the resonating valence bond (RVB) theory of high-temperature superconductivity using Gutzwiller projected wave functions that incorporate strong correlations. After a general overview of the phenomenon of high-temperature superconductivity, we discuss Anderson's RVB picture and its implementation by renormalized mean-field theory (RMFT) and variational Monte Carlo (VMC) techniques. We review RMFT and VMC results with an emphasis on recent developments in extending VMC and RMFT techniques to excited states. We compare results obtained from these methods with angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM). We conclude by summarizing recent successes of this approach and discuss open problems that need to be solved for a consistent and complete description of high-temperature superconductivity using Gutzwiller projected wave functions.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"56 1","pages":"1033 - 927"},"PeriodicalIF":35.0000,"publicationDate":"2007-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730701627707","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018730701627707","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 133
Abstract
We review the resonating valence bond (RVB) theory of high-temperature superconductivity using Gutzwiller projected wave functions that incorporate strong correlations. After a general overview of the phenomenon of high-temperature superconductivity, we discuss Anderson's RVB picture and its implementation by renormalized mean-field theory (RMFT) and variational Monte Carlo (VMC) techniques. We review RMFT and VMC results with an emphasis on recent developments in extending VMC and RMFT techniques to excited states. We compare results obtained from these methods with angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM). We conclude by summarizing recent successes of this approach and discuss open problems that need to be solved for a consistent and complete description of high-temperature superconductivity using Gutzwiller projected wave functions.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.