Dynamics of a quantum phase transition and relaxation to a steady state

IF 35 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Advances in Physics Pub Date : 2009-12-20 DOI:10.1080/00018732.2010.514702
J. Dziarmaga
{"title":"Dynamics of a quantum phase transition and relaxation to a steady state","authors":"J. Dziarmaga","doi":"10.1080/00018732.2010.514702","DOIUrl":null,"url":null,"abstract":"We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly, the review is divided into two parts. The first part revolves around a quantum version of the Kibble–Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"59 1","pages":"1063 - 1189"},"PeriodicalIF":35.0000,"publicationDate":"2009-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2010.514702","citationCount":"437","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2010.514702","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 437

Abstract

We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly, the review is divided into two parts. The first part revolves around a quantum version of the Kibble–Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子相变和弛豫到稳态的动力学
我们回顾了最近在两个密切相关的问题上的理论工作:一个孤立的量子凝聚态系统在连续量子相变或无间隙相变中绝热驱动的激发,以及一个激发态系统在其哈密顿量参数突然猝灭后的表观弛豫。因此,审查分为两个部分。第一部分围绕着Kibble-Zurek机制的量子版本,包括超越这个简单范例的现象。它们的共同之处在于,无间隙多体系统的激励以驱动率的功率为尺度。第二部分试图系统地介绍孤立量子多体系统在突然猝灭激发后纯态的表观弛豫的最新结果和猜想。这项研究的部分动机是由于最近超冷原子物理学的实验发展,在绝热量子态制备和量子计算中具有潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics
Advances in Physics 物理-物理:凝聚态物理
CiteScore
67.60
自引率
0.00%
发文量
1
期刊介绍: Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.
期刊最新文献
Lectures on quantum supreme matter Jan Zaanen – In memoriam Ambipolarity of hydrogen in matter revealed by muons Martingales for physicists: a treatise on stochastic thermodynamics and beyond A review of uranium-based thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1