Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films

IF 35 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Advances in Physics Pub Date : 2012-06-01 DOI:10.1080/00018732.2012.706401
J. Krim
{"title":"Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films","authors":"J. Krim","doi":"10.1080/00018732.2012.706401","DOIUrl":null,"url":null,"abstract":"This review provides an overview of recent advances that have been achieved in understanding the basic physics of friction and energy dissipation in molecularly thin adsorbed films and the associated impact on friction at microscopic and macroscopic length scales. Topics covered include a historical overview of the fundamental understanding of macroscopic friction, theoretical treatments of phononic and electronic energy dissipation mechanisms in thin films, and current experimental methods capable of probing such phenomena. Measurements performed on adsorbates sliding in unconfined geometries with the quartz crystal microbalance technique receive particular attention. The final sections review the experimental literature of how measurements of sliding friction in thin films reveal energy dissipation mechanisms and how the results can be linked to film-spreading behavior, lubrication, film phase transitions, superconductivity-dependent friction, and microelectromechanical systems applications. Materials systems reported on include adsorbed films comprised of helium, neon, argon, krypton, xenon, water, oxygen, nitrogen, carbon monoxide, ethane, ethanol, trifluoroethanol, methanol, cyclohexane, ethylene, pentanol, toluene, tricresylphosphate, t-butylphenyl phosphate, benzene, and iodobenzene. Substrates reported on include silver, gold, aluminum, copper, nickel, lead, silicon, graphite, graphene, fullerenes, C60, diamond, carbon, diamond-like carbon, and YBa2Cu3O7, and self-assembled monolayers consisting of tethered polymeric molecules.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"61 1","pages":"155 - 323"},"PeriodicalIF":35.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2012.706401","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2012.706401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 31

Abstract

This review provides an overview of recent advances that have been achieved in understanding the basic physics of friction and energy dissipation in molecularly thin adsorbed films and the associated impact on friction at microscopic and macroscopic length scales. Topics covered include a historical overview of the fundamental understanding of macroscopic friction, theoretical treatments of phononic and electronic energy dissipation mechanisms in thin films, and current experimental methods capable of probing such phenomena. Measurements performed on adsorbates sliding in unconfined geometries with the quartz crystal microbalance technique receive particular attention. The final sections review the experimental literature of how measurements of sliding friction in thin films reveal energy dissipation mechanisms and how the results can be linked to film-spreading behavior, lubrication, film phase transitions, superconductivity-dependent friction, and microelectromechanical systems applications. Materials systems reported on include adsorbed films comprised of helium, neon, argon, krypton, xenon, water, oxygen, nitrogen, carbon monoxide, ethane, ethanol, trifluoroethanol, methanol, cyclohexane, ethylene, pentanol, toluene, tricresylphosphate, t-butylphenyl phosphate, benzene, and iodobenzene. Substrates reported on include silver, gold, aluminum, copper, nickel, lead, silicon, graphite, graphene, fullerenes, C60, diamond, carbon, diamond-like carbon, and YBa2Cu3O7, and self-assembled monolayers consisting of tethered polymeric molecules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吸附分子和分子薄膜中的摩擦和能量耗散机制
本文综述了近年来在理解分子薄吸附膜中摩擦和能量耗散的基本物理以及在微观和宏观长度尺度上对摩擦的相关影响方面取得的进展。涵盖的主题包括宏观摩擦的基本理解的历史概述,薄膜中声子和电子能量耗散机制的理论处理,以及能够探测此类现象的当前实验方法。用石英晶体微天平技术测量在无约束几何中滑动的吸附物受到特别的关注。最后几节回顾了薄膜中滑动摩擦的测量如何揭示能量耗散机制的实验文献,以及如何将结果与薄膜扩散行为、润滑、薄膜相变、超导依赖摩擦和微机电系统应用联系起来。所报道的材料系统包括由氦、氖、氩、氪、氙、水、氧、氮、一氧化碳、乙烷、乙醇、三氟乙醇、甲醇、环己烷、乙烯、戊醇、甲苯、三烷基磷酸、磷酸叔丁基苯、苯和碘苯组成的吸附膜。报道的衬底包括银、金、铝、铜、镍、铅、硅、石墨、石墨烯、富勒烯、C60、金刚石、碳、类金刚石碳和YBa2Cu3O7,以及由拴链聚合物分子组成的自组装单层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics
Advances in Physics 物理-物理:凝聚态物理
CiteScore
67.60
自引率
0.00%
发文量
1
期刊介绍: Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.
期刊最新文献
Lectures on quantum supreme matter Jan Zaanen – In memoriam Ambipolarity of hydrogen in matter revealed by muons Martingales for physicists: a treatise on stochastic thermodynamics and beyond A review of uranium-based thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1