Electronic crystals: an experimental overview

IF 35 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Advances in Physics Pub Date : 2012-08-01 DOI:10.1080/00018732.2012.719674
P. Monceau
{"title":"Electronic crystals: an experimental overview","authors":"P. Monceau","doi":"10.1080/00018732.2012.719674","DOIUrl":null,"url":null,"abstract":"This article reviews the static and dynamic properties of spontaneous superstructures formed by electrons. Representations of such electronic crystals are charge density waves (CDW) and spin density waves in inorganic as well as organic low-dimensional materials. A special attention is paid to the collective effects in pinning and sliding of these superstructures, and the glassy properties at low temperature. Charge order and charge disproportionation which occur in organic materials resulting from correlation effects are analysed. Experiments under magnetic field, and more specifically field-induced CDWs are discussed. Properties of meso- and nanostructures of CDWs are also reviewed.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"61 1","pages":"325 - 581"},"PeriodicalIF":35.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2012.719674","citationCount":"348","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2012.719674","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 348

Abstract

This article reviews the static and dynamic properties of spontaneous superstructures formed by electrons. Representations of such electronic crystals are charge density waves (CDW) and spin density waves in inorganic as well as organic low-dimensional materials. A special attention is paid to the collective effects in pinning and sliding of these superstructures, and the glassy properties at low temperature. Charge order and charge disproportionation which occur in organic materials resulting from correlation effects are analysed. Experiments under magnetic field, and more specifically field-induced CDWs are discussed. Properties of meso- and nanostructures of CDWs are also reviewed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子晶体:实验综述
本文综述了由电子形成的自发超结构的静态和动态性质。这种电子晶体的表征是无机和有机低维材料中的电荷密度波(CDW)和自旋密度波。特别注意了这些上层结构的钉住和滑动的集体效应,以及低温下的玻璃性质。分析了有机质中由于相关效应而产生的电荷顺序和电荷歧化现象。讨论了磁场下的实验,特别是场致cdw。综述了CDWs的介观和纳米结构的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics
Advances in Physics 物理-物理:凝聚态物理
CiteScore
67.60
自引率
0.00%
发文量
1
期刊介绍: Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.
期刊最新文献
Lectures on quantum supreme matter Jan Zaanen – In memoriam Ambipolarity of hydrogen in matter revealed by muons Martingales for physicists: a treatise on stochastic thermodynamics and beyond A review of uranium-based thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1