Intermediate coupling model of the cuprates

IF 35 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Advances in Physics Pub Date : 2014-05-04 DOI:10.1080/00018732.2014.940227
T. Das, R. Markiewicz, A. Bansil
{"title":"Intermediate coupling model of the cuprates","authors":"T. Das, R. Markiewicz, A. Bansil","doi":"10.1080/00018732.2014.940227","DOIUrl":null,"url":null,"abstract":"We review the intermediate coupling model for treating electronic correlations in the cuprates. Spectral signatures of the intermediate coupling scenario are identified and used to adduce that the cuprates fall in the intermediate rather than the weak or the strong coupling limits. A robust, ‘beyond local-density approximation’ framework for obtaining wide-ranging properties of the cuprates via a GW-approximation based self-consistent self-energy correction for incorporating correlation effects is delineated. In this way, doping- and temperature-dependent spectra, from the undoped insulator to the overdoped metal, in the normal as well as the superconducting state, with features of both weak and strong coupling can be modeled in a material-specific manner with very few parameters. Efficacy of the model is shown by considering available spectroscopic data on electron- and hole-doped cuprates from angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, neutron scattering, inelastic light scattering, optical and other experiments. Generalizations to treat systems with multiple correlated bands such as the heavy-fermions, the ruthenates and the actinides are discussed.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":35.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2014.940227","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2014.940227","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 49

Abstract

We review the intermediate coupling model for treating electronic correlations in the cuprates. Spectral signatures of the intermediate coupling scenario are identified and used to adduce that the cuprates fall in the intermediate rather than the weak or the strong coupling limits. A robust, ‘beyond local-density approximation’ framework for obtaining wide-ranging properties of the cuprates via a GW-approximation based self-consistent self-energy correction for incorporating correlation effects is delineated. In this way, doping- and temperature-dependent spectra, from the undoped insulator to the overdoped metal, in the normal as well as the superconducting state, with features of both weak and strong coupling can be modeled in a material-specific manner with very few parameters. Efficacy of the model is shown by considering available spectroscopic data on electron- and hole-doped cuprates from angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, neutron scattering, inelastic light scattering, optical and other experiments. Generalizations to treat systems with multiple correlated bands such as the heavy-fermions, the ruthenates and the actinides are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜酸盐的中间耦合模型
本文综述了处理铜酸盐中电子相关的中间耦合模型。识别了中间耦合情景的光谱特征,并使用它来引证铜酸盐落在中间而不是弱或强耦合极限。描述了一个稳健的“超越局部密度近似”框架,该框架通过基于gw近似的自洽自能校正来结合相关效应,从而获得铜酸盐的广泛性质。这样,从未掺杂的绝缘体到过掺杂的金属,在正常和超导状态下,具有弱和强耦合特征的掺杂和温度相关光谱可以用很少的参数以特定材料的方式建模。通过角分辨光电发射、扫描隧道显微镜/光谱学、中子散射、非弹性光散射、光学和其他实验,对电子和空穴掺杂铜酸盐的光谱数据进行分析,证明了模型的有效性。讨论了处理重费米子、钌酸盐和锕系等多相关带系的推广方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics
Advances in Physics 物理-物理:凝聚态物理
CiteScore
67.60
自引率
0.00%
发文量
1
期刊介绍: Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.
期刊最新文献
Martingales for physicists: a treatise on stochastic thermodynamics and beyond A review of uranium-based thin films Path integrals and stochastic calculus Properties of condensed matter from fundamental physical constants Editorial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1