Domain boundary-dominated systems: adaptive structures and functional twin boundaries

IF 35 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Advances in Physics Pub Date : 2014-07-04 DOI:10.1080/00018732.2014.974304
D. Viehland, E. Salje
{"title":"Domain boundary-dominated systems: adaptive structures and functional twin boundaries","authors":"D. Viehland, E. Salje","doi":"10.1080/00018732.2014.974304","DOIUrl":null,"url":null,"abstract":"Domain boundaries typically constitute only a minute fraction of the total volume of a crystal. However, a special (but not unusual) situation can occur in which the domain boundary energy becomes very small. Specifically, the domain size is miniaturized to near-atomic scales and the domain boundary density becomes extremely high. In such cases, the properties of the crystal become dominated by a combination of both the domains and the domain boundaries. This phenomenon differs from most ferromagnetic or ferroelectric materials wherein the motion of the domain boundaries dominates the response. As reported herein, novel emergent phenomena that differ from the properties of either the domains or the domain boundaries may be expected. In this article, we focus on one specific state found in ferroic materials – namely, the adaptive ferroic state. This state can be found, for example, in tweed-like structures in morphotropic phase boundary piezoelectric crystals, ferromagnetic shape memory alloys, and pre-martensitic states. In these materials, the properties of the twin boundaries represent the principal contributors to the functionality of a given system. In fact, further investigations of domain boundary-dominated phenomena could result in novel potential for tailoring functional properties for a desired outcome. It should also be noted that new properties can be designed into twin boundaries that are not the properties of the domains. In this paper, adaptive structures and functional twin boundaries are reviewed, and examples of various observed functionalities (e.g. superconductivity, polarity, and ferroelectricity) and corresponding twin boundary structures are provided. In addition, this review confirms that various theoretically predicted, structurally bridging low-symmetry phases do, in fact, exist. Moreover, the values of the lattice constants of the adaptive state are adjustable parameters that are determined by combinations of cubic, rhombohedral/tetragonal phases, and geometrical invariant conditions. Finally, we show that, in such cases, macroscopic properties are controlled by the unique functionality of the twin walls. Looking forward, domain boundary-dominated phenomena offer an important approach for enhancing the properties of the bulk, and to unique local properties where the “twin is the device”. We encourage the community to rethink their approaches to materials by design that have treated the structure as homogeneous and to consider the alternative paradigm where the local structure is different from the apparent average symmetry.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"63 1","pages":"267 - 326"},"PeriodicalIF":35.0000,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2014.974304","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2014.974304","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 88

Abstract

Domain boundaries typically constitute only a minute fraction of the total volume of a crystal. However, a special (but not unusual) situation can occur in which the domain boundary energy becomes very small. Specifically, the domain size is miniaturized to near-atomic scales and the domain boundary density becomes extremely high. In such cases, the properties of the crystal become dominated by a combination of both the domains and the domain boundaries. This phenomenon differs from most ferromagnetic or ferroelectric materials wherein the motion of the domain boundaries dominates the response. As reported herein, novel emergent phenomena that differ from the properties of either the domains or the domain boundaries may be expected. In this article, we focus on one specific state found in ferroic materials – namely, the adaptive ferroic state. This state can be found, for example, in tweed-like structures in morphotropic phase boundary piezoelectric crystals, ferromagnetic shape memory alloys, and pre-martensitic states. In these materials, the properties of the twin boundaries represent the principal contributors to the functionality of a given system. In fact, further investigations of domain boundary-dominated phenomena could result in novel potential for tailoring functional properties for a desired outcome. It should also be noted that new properties can be designed into twin boundaries that are not the properties of the domains. In this paper, adaptive structures and functional twin boundaries are reviewed, and examples of various observed functionalities (e.g. superconductivity, polarity, and ferroelectricity) and corresponding twin boundary structures are provided. In addition, this review confirms that various theoretically predicted, structurally bridging low-symmetry phases do, in fact, exist. Moreover, the values of the lattice constants of the adaptive state are adjustable parameters that are determined by combinations of cubic, rhombohedral/tetragonal phases, and geometrical invariant conditions. Finally, we show that, in such cases, macroscopic properties are controlled by the unique functionality of the twin walls. Looking forward, domain boundary-dominated phenomena offer an important approach for enhancing the properties of the bulk, and to unique local properties where the “twin is the device”. We encourage the community to rethink their approaches to materials by design that have treated the structure as homogeneous and to consider the alternative paradigm where the local structure is different from the apparent average symmetry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
领域边界主导的系统:自适应结构和功能双边界
畴边界通常只占晶体总体积的一小部分。然而,一种特殊的(但不是不寻常的)情况会发生,在这种情况下,畴边界能量变得非常小。具体来说,畴尺寸被缩小到接近原子尺度,畴边界密度变得非常高。在这种情况下,晶体的性质由畴和畴边界的结合决定。这种现象不同于大多数铁磁或铁电材料,其中畴边界的运动主导了响应。正如本文所报道的,可能会出现与领域或领域边界的性质不同的新涌现现象。在这篇文章中,我们关注的是在铁材料中发现的一种特殊状态——即自适应铁态。例如,这种状态可以在取向相界压电晶体、铁磁形状记忆合金和预马氏体状态中的花呢状结构中发现。在这些材料中,孪生边界的性质代表了给定系统功能的主要贡献者。事实上,对领域边界主导现象的进一步研究可能会导致为期望的结果定制功能属性的新潜力。还应该注意的是,新的属性可以设计成双边界,而不是域的属性。本文对自适应结构和功能孪晶界进行了综述,并举例说明了观察到的各种功能(如超导性、极性和铁电性)和相应的孪晶界结构。此外,这篇综述证实了各种理论上预测的、结构上桥接的低对称相实际上确实存在。此外,自适应状态的晶格常数值是可调参数,由立方相、菱形相/四边形相和几何不变条件的组合决定。最后,我们表明,在这种情况下,宏观性质是由双壁的独特功能控制的。展望未来,领域边界主导现象为增强体的性质提供了一个重要的方法,并提供了独特的局部性质,其中“孪生是器件”。我们鼓励社区重新思考他们的材料设计方法,将结构视为均匀的,并考虑局部结构不同于表面平均对称的替代范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics
Advances in Physics 物理-物理:凝聚态物理
CiteScore
67.60
自引率
0.00%
发文量
1
期刊介绍: Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.
期刊最新文献
Lectures on quantum supreme matter Jan Zaanen – In memoriam Ambipolarity of hydrogen in matter revealed by muons Martingales for physicists: a treatise on stochastic thermodynamics and beyond A review of uranium-based thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1