M. Furlong, H. Spafford, P. Ridland, N. Endersby, O. Edwards, G. Baker, M. Keller, C. Paull
{"title":"Ecology of diamondback moth in Australian canola: landscape perspectives and the implications for management","authors":"M. Furlong, H. Spafford, P. Ridland, N. Endersby, O. Edwards, G. Baker, M. Keller, C. Paull","doi":"10.1071/EA07413","DOIUrl":null,"url":null,"abstract":"The ecology of diamondback moth (DBM), Plutella xylsotella L. (Lepidoptera: Plutellidae), and records of its frequent, but sporadic, population outbreaks in the canola agroecosystems of southern and western Australia are reviewed. The migratory capacity of DBM, possible maintenance of pest populations on brassicaceous weeds and forage crops, resistance to commonly used pyrethroid insecticides, a lack of effective natural enemies (due to disruption by insecticides and difficulties associated with colonising the vast areas of canola crops) and suitable climatic conditions during critical phases of the crop cycle are all likely to contribute to the observed pest outbreaks. A greater understanding of the ecology of DBM in the canola landscape is fundamental to improving its management in the crop but relevant long-term DBM abundance data are currently lacking. Five critical research issues are identified: (i) improved understanding of the factors which determine regional movement patterns of diamondback in canola-growing areas; (ii) the development and implementation of flexible insecticide resistance management strategies; (iii) better understanding of canola crop colonisation by natural enemies of DBM and their population dynamics under current and alternative insecticide application strategies; (iv) greater appreciation of the interactions between DBM and its crop and weedy host plants; and (v) the development of validated simulation models to aid in the forecasting of possible DBM outbreaks. Each issue represents a significant challenge but all must be addressed if the development of a sustainable integrated strategy for the management of DBM in Australian canola is to become a reality.","PeriodicalId":8636,"journal":{"name":"Australian Journal of Experimental Agriculture","volume":"48 1","pages":"1494-1505"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1071/EA07413","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Experimental Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/EA07413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
The ecology of diamondback moth (DBM), Plutella xylsotella L. (Lepidoptera: Plutellidae), and records of its frequent, but sporadic, population outbreaks in the canola agroecosystems of southern and western Australia are reviewed. The migratory capacity of DBM, possible maintenance of pest populations on brassicaceous weeds and forage crops, resistance to commonly used pyrethroid insecticides, a lack of effective natural enemies (due to disruption by insecticides and difficulties associated with colonising the vast areas of canola crops) and suitable climatic conditions during critical phases of the crop cycle are all likely to contribute to the observed pest outbreaks. A greater understanding of the ecology of DBM in the canola landscape is fundamental to improving its management in the crop but relevant long-term DBM abundance data are currently lacking. Five critical research issues are identified: (i) improved understanding of the factors which determine regional movement patterns of diamondback in canola-growing areas; (ii) the development and implementation of flexible insecticide resistance management strategies; (iii) better understanding of canola crop colonisation by natural enemies of DBM and their population dynamics under current and alternative insecticide application strategies; (iv) greater appreciation of the interactions between DBM and its crop and weedy host plants; and (v) the development of validated simulation models to aid in the forecasting of possible DBM outbreaks. Each issue represents a significant challenge but all must be addressed if the development of a sustainable integrated strategy for the management of DBM in Australian canola is to become a reality.