Xiao Chen, Jiadong Chen, Dehua Liao, Hanghang Ye, Cai Li, Zhenzhen Luo, Anning Yan, Qingchun Zhao, Kun Xie, Yiting Li, Dongsheng Wang, Jun Chen, Aiqun Chen, Guohua Xu
{"title":"Auxin-mediated regulation of arbuscular mycorrhizal symbiosis: A role of SlGH3.4 in tomato","authors":"Xiao Chen, Jiadong Chen, Dehua Liao, Hanghang Ye, Cai Li, Zhenzhen Luo, Anning Yan, Qingchun Zhao, Kun Xie, Yiting Li, Dongsheng Wang, Jun Chen, Aiqun Chen, Guohua Xu","doi":"10.1111/pce.14210","DOIUrl":null,"url":null,"abstract":"<p>Most land plants can establish symbiosis with arbuscular mycorrhizal (AM) fungi to increase fitness to environmental challenges. The development of AM symbiosis is controlled by intricate procedures involving all phytohormones. However, the mechanisms underlying the auxin-mediated regulation of AM symbiosis remains largely unknown. Here, we report that AM colonisation promotes auxin response and indole-3-acetic acid (IAA) accumulation, but downregulates IAA biosynthesis genes in tomato (<i>Solanum lycopersicum</i>). External IAA application modulates the AM symbiosis by promoting arbuscule formation at low concentrations but repressing it at high concentrations. An AM-induced GH3 gene, <i>SlGH3.4</i>, encoding a putative IAA-amido synthetase, negatively regulates mycorrhization via maintaining cellular auxin homoeostasis. Loss of SlGH3.4 function increased free IAA content and arbuscule incidence, while constitutively overexpressing <i>SlGH3.4</i> in either tomato or rice resulted in decreased IAA content, total colonisation level and arbuscule abundance in mycorrhizal roots. Several auxin-inducible expansin genes involved in AM formation or resistance to pathogen infection were upregulated in <i>slgh3.4</i> mycorrhizal roots but downregulated in the <i>SlGH3.4</i>-overexpressing plants. Taken together, our results highlight a positive correlation between the endogenous IAA content and mycorrhization level, particularly arbuscule incidence, and suggest that the SlGH3.4-mediated auxin homoeostasis and regulation of expansin genes is involved in finely tuning the AM development.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":"45 3","pages":"955-968"},"PeriodicalIF":6.3000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pce.14210","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 14
Abstract
Most land plants can establish symbiosis with arbuscular mycorrhizal (AM) fungi to increase fitness to environmental challenges. The development of AM symbiosis is controlled by intricate procedures involving all phytohormones. However, the mechanisms underlying the auxin-mediated regulation of AM symbiosis remains largely unknown. Here, we report that AM colonisation promotes auxin response and indole-3-acetic acid (IAA) accumulation, but downregulates IAA biosynthesis genes in tomato (Solanum lycopersicum). External IAA application modulates the AM symbiosis by promoting arbuscule formation at low concentrations but repressing it at high concentrations. An AM-induced GH3 gene, SlGH3.4, encoding a putative IAA-amido synthetase, negatively regulates mycorrhization via maintaining cellular auxin homoeostasis. Loss of SlGH3.4 function increased free IAA content and arbuscule incidence, while constitutively overexpressing SlGH3.4 in either tomato or rice resulted in decreased IAA content, total colonisation level and arbuscule abundance in mycorrhizal roots. Several auxin-inducible expansin genes involved in AM formation or resistance to pathogen infection were upregulated in slgh3.4 mycorrhizal roots but downregulated in the SlGH3.4-overexpressing plants. Taken together, our results highlight a positive correlation between the endogenous IAA content and mycorrhization level, particularly arbuscule incidence, and suggest that the SlGH3.4-mediated auxin homoeostasis and regulation of expansin genes is involved in finely tuning the AM development.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.