A. Ghizzo, M. E. Mouden, D. Sarto, X. Garbet, Y. Sarazin
{"title":"Global Gyrokinetic Stability of Temperature-Gradient-Driven Trapped Ion Modes with Magnetic Shear","authors":"A. Ghizzo, M. E. Mouden, D. Sarto, X. Garbet, Y. Sarazin","doi":"10.1080/00411450.2011.651043","DOIUrl":null,"url":null,"abstract":"Global gyrokinetic Vlasov simulations for trapped ion modes indicate that the ion temperature gradient (ITG) instability saturates via nonlinear toroidal coupling. Trapped Ion modes were studied by solving a Vlasov equation averaged over the cyclotron and bounce motion of trapped ions. The distribution function, for trapped ions, is then calculated in a two-dimensional phase space, parametrized by two adiabatic invariants, the longitudinal action and the magnetic moment, in presence of a magnetic shear. Our model can be viewed as a kinetic version of the standard one-field Hasegawa-Mima-type and a broad frequency spectrum can originate from model for trapped-ion driven turbulence. Some interesting new features, which appear in the nonlinear regime of the instability, are then discussed.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"10 1","pages":"382 - 418"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2011.651043","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2011.651043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Global gyrokinetic Vlasov simulations for trapped ion modes indicate that the ion temperature gradient (ITG) instability saturates via nonlinear toroidal coupling. Trapped Ion modes were studied by solving a Vlasov equation averaged over the cyclotron and bounce motion of trapped ions. The distribution function, for trapped ions, is then calculated in a two-dimensional phase space, parametrized by two adiabatic invariants, the longitudinal action and the magnetic moment, in presence of a magnetic shear. Our model can be viewed as a kinetic version of the standard one-field Hasegawa-Mima-type and a broad frequency spectrum can originate from model for trapped-ion driven turbulence. Some interesting new features, which appear in the nonlinear regime of the instability, are then discussed.