{"title":"Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency","authors":"E. Pikalova, E. Kalinina","doi":"10.1070/RCR4966","DOIUrl":null,"url":null,"abstract":"Modern approaches to increasing the efficiency of solid-oxide fuel cells (SOFCs) based on electrolytic membranes with mixed conductivity are considered. These approaches are based on material-science concepts (expansion of the electrolytic domain boundary due to the doping of basic oxides and development of various composite materials) and various technological solutions (application of electron-blocking layers on the anode and cathode sides, rational selection of the electrolyte thickness, and optimization of the electrolyte and electrode structures by synthesizing heterostructures). The methods of mathematical modelling of devices with an electrolytic membrane having mixed conductivity are analyzed in order to determine the most efficient design and optimal operation conditions for SOFCs. The application of nanocomposite electrolytes with a core – shell structure and salt composites is considered. Data on new design solutions — single-layer and single-chamber SOFCs — are presented. The prospects of the proposed approaches are evaluated. The bibliography includes 384 references.","PeriodicalId":21523,"journal":{"name":"Russian Chemical Reviews","volume":"60 25 1","pages":"703 - 749"},"PeriodicalIF":7.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1070/RCR4966","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
Abstract
Modern approaches to increasing the efficiency of solid-oxide fuel cells (SOFCs) based on electrolytic membranes with mixed conductivity are considered. These approaches are based on material-science concepts (expansion of the electrolytic domain boundary due to the doping of basic oxides and development of various composite materials) and various technological solutions (application of electron-blocking layers on the anode and cathode sides, rational selection of the electrolyte thickness, and optimization of the electrolyte and electrode structures by synthesizing heterostructures). The methods of mathematical modelling of devices with an electrolytic membrane having mixed conductivity are analyzed in order to determine the most efficient design and optimal operation conditions for SOFCs. The application of nanocomposite electrolytes with a core – shell structure and salt composites is considered. Data on new design solutions — single-layer and single-chamber SOFCs — are presented. The prospects of the proposed approaches are evaluated. The bibliography includes 384 references.
期刊介绍:
Russian Chemical Reviews serves as a complete translation of the esteemed monthly review journal Uspekhi Khimii, which has been a prominent figure in Russian scientific journals since its establishment in 1932. It offers comprehensive access to the advancements made by chemists from Russia and other former Soviet Union countries.
Established in 1932, Russian Chemical Reviews is committed to publishing timely and significant review articles encompassing various facets of modern chemistry, including chemical physics, physical chemistry, computational and theoretical chemistry, catalysis, coordination chemistry, analytical chemistry, organic, organometallic, and organoelement chemistry, chemistry of macromolecules, applied chemistry, biochemistry, bio-organic chemistry, biomolecular chemistry, medicinal chemistry, materials chemistry, nanochemistry, nanostructures, and environmental chemistry.