Compressive sensing–based optimal sensor placement and fault diagnosis for multi-station assembly processes

K. Bastani, Z. Kong, Wenzhen Huang, Yingqing Zhou
{"title":"Compressive sensing–based optimal sensor placement and fault diagnosis for multi-station assembly processes","authors":"K. Bastani, Z. Kong, Wenzhen Huang, Yingqing Zhou","doi":"10.1080/0740817X.2015.1096431","DOIUrl":null,"url":null,"abstract":"ABSTRACT Developments in sensing technologies have created the opportunity to diagnose the process faults in multi-station assembly processes by analyzing measurement data. Sufficient diagnosability for process faults is a challenging issue, as the sensors cannot be excessively used. Therefore, there have been a number of methods reported in the literature for the optimization of the diagnosability of a diagnostic method for a given sensor cost, thus allowing the identification of process faults incurred in multi-station assembly processes. However, most of these methods assume that the number of sensors is more than that of the process errors. Unfortunately, this assumption may not hold in many real industrial applications. Thus, the diagnostic methods have to solve underdetermined linear equations. In order to address this issue, we propose an optimal sensor placement method by devising a new diagnosability criterion based on compressive sensing theory, which is able to handle underdetermined linear equations. Our method seeks the optimal sensor placement by minimizing the average mutual coherence to maximize the diagnosability. The proposed method is demonstrated and validated through case studies from actual industrial applications.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"462 - 474"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1096431","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1096431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

ABSTRACT Developments in sensing technologies have created the opportunity to diagnose the process faults in multi-station assembly processes by analyzing measurement data. Sufficient diagnosability for process faults is a challenging issue, as the sensors cannot be excessively used. Therefore, there have been a number of methods reported in the literature for the optimization of the diagnosability of a diagnostic method for a given sensor cost, thus allowing the identification of process faults incurred in multi-station assembly processes. However, most of these methods assume that the number of sensors is more than that of the process errors. Unfortunately, this assumption may not hold in many real industrial applications. Thus, the diagnostic methods have to solve underdetermined linear equations. In order to address this issue, we propose an optimal sensor placement method by devising a new diagnosability criterion based on compressive sensing theory, which is able to handle underdetermined linear equations. Our method seeks the optimal sensor placement by minimizing the average mutual coherence to maximize the diagnosability. The proposed method is demonstrated and validated through case studies from actual industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩感知的多工位装配过程传感器优化配置与故障诊断
传感技术的发展为通过分析测量数据来诊断多工位装配过程中的过程故障创造了机会。充分诊断过程故障是一个具有挑战性的问题,因为传感器不能过度使用。因此,文献中已经报道了许多方法,用于优化给定传感器成本的诊断方法的可诊断性,从而允许识别多站装配过程中发生的过程故障。然而,这些方法大多假设传感器的数量大于过程误差的数量。不幸的是,这种假设在许多实际的工业应用中可能不成立。因此,诊断方法必须求解欠定线性方程。为了解决这一问题,我们设计了一种新的基于压缩感知理论的可诊断性准则,该准则能够处理欠定线性方程,从而提出了一种最优传感器放置方法。我们的方法通过最小化平均相互相干来寻求传感器的最佳位置,以最大化可诊断性。通过实际工业应用的案例研究,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1