Chenxu Li, Yu An, Dachuan Chen, Qiulin Lin, Nian Si
{"title":"Efficient computation of the likelihood expansions for diffusion models","authors":"Chenxu Li, Yu An, Dachuan Chen, Qiulin Lin, Nian Si","doi":"10.1080/0740817X.2016.1200201","DOIUrl":null,"url":null,"abstract":"ABSTRACT Closed-form likelihood expansion is an important method for econometric assessment of continuous-time models driven by stochastic differential equations based on discretely sampled data. However, practical applications for sophisticated models usually involve significant computational efforts in calculating high-order expansion terms in order to obtain the desirable level of accuracy. We provide new and efficient algorithms for symbolically implementing the closed-form expansion of the transition density. First, combinatorial analysis leads to an alternative expression of the closed-form formula for assembling expansion terms from that currently available in the literature. Second, as the most challenging task and central building block for constructing the expansions, a novel analytical formula for calculating the conditional expectation of iterated Stratonovich integrals is proposed and a new algorithm for converting the conditional expectation of the multiplication of iterated Stratonovich integrals to a linear combination of conditional expectation of iterated Stratonovich integrals is developed. In addition to a procedure for creating expansions for a nonaffine exponential Ornstein–Uhlenbeck stochastic volatility model, we illustrate the computational performance of our method.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"1156 - 1171"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2016.1200201","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2016.1200201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT Closed-form likelihood expansion is an important method for econometric assessment of continuous-time models driven by stochastic differential equations based on discretely sampled data. However, practical applications for sophisticated models usually involve significant computational efforts in calculating high-order expansion terms in order to obtain the desirable level of accuracy. We provide new and efficient algorithms for symbolically implementing the closed-form expansion of the transition density. First, combinatorial analysis leads to an alternative expression of the closed-form formula for assembling expansion terms from that currently available in the literature. Second, as the most challenging task and central building block for constructing the expansions, a novel analytical formula for calculating the conditional expectation of iterated Stratonovich integrals is proposed and a new algorithm for converting the conditional expectation of the multiplication of iterated Stratonovich integrals to a linear combination of conditional expectation of iterated Stratonovich integrals is developed. In addition to a procedure for creating expansions for a nonaffine exponential Ornstein–Uhlenbeck stochastic volatility model, we illustrate the computational performance of our method.