{"title":"In Utero Exposure to Fine Particles Decreases Early Birth Weight of Rat Offspring and TLR4/NF-κB Expression in Lungs","authors":"Wenting Tang, Zhongjun Li, Yaoguang Huang, Lili Du, Chuangyu Wen, Wen Sun, Zhiqiang Yu, Suran Huang*, Dunjin Chen*","doi":"10.1021/acs.chemrestox.0c00056","DOIUrl":null,"url":null,"abstract":"<p >Particulate matter (PM2.5) exposure is reported to have deleterious effects on health. Maternal PM2.5 exposure has been confirmed to damage the growth of somatic cells and enhance the incidence of chronic respiratory diseases in children. Here we aim to investigate the impact of in utero PM2.5 exposure on early birth weight and postnatal lung development. Pregnant Sprague–Dawley rats were administered PM2.5 (0.1, 0.5, 2.5, or 7.5 mg/kg) intraperitoneally every 3 days until birth. Maternal and birth outcomes and somatic growth were monitored. Lungs were collected on PND1 (where PND = postnatal day) and PND28; the lung wet-to-dry weight ratio (W/D) was analyzed, and reactive oxygen species (ROS) levels were measured. Expression of Toll-like receptor 4 (TLR4) and NF-κB were evaluated by Western blotting and quantitative RT-PCR. There were no significant intergroup differences for maternal outcomes; however, offspring exposed in utero to 2.5 and 7.5 mg/kg PM2.5 were significantly smaller in litter weight than the controls. In utero exposure to 2.5 and 7.5 mg/kg PM2.5 led to lower body weight after birth and disrupted lung development during infancy. ROS levels were significantly increased in the 7.5 mg/kg PM2.5 group. PM2.5-treated rats showed upregulated pulmonary expression of TLR4 and NF-κB. Maternal PM2.5 exposure enhances the risk of low birth weight and affects lung alveolar development. The underlying molecular mechanisms may involve TLR4/NF-κB signaling.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.chemrestox.0c00056","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 3
Abstract
Particulate matter (PM2.5) exposure is reported to have deleterious effects on health. Maternal PM2.5 exposure has been confirmed to damage the growth of somatic cells and enhance the incidence of chronic respiratory diseases in children. Here we aim to investigate the impact of in utero PM2.5 exposure on early birth weight and postnatal lung development. Pregnant Sprague–Dawley rats were administered PM2.5 (0.1, 0.5, 2.5, or 7.5 mg/kg) intraperitoneally every 3 days until birth. Maternal and birth outcomes and somatic growth were monitored. Lungs were collected on PND1 (where PND = postnatal day) and PND28; the lung wet-to-dry weight ratio (W/D) was analyzed, and reactive oxygen species (ROS) levels were measured. Expression of Toll-like receptor 4 (TLR4) and NF-κB were evaluated by Western blotting and quantitative RT-PCR. There were no significant intergroup differences for maternal outcomes; however, offspring exposed in utero to 2.5 and 7.5 mg/kg PM2.5 were significantly smaller in litter weight than the controls. In utero exposure to 2.5 and 7.5 mg/kg PM2.5 led to lower body weight after birth and disrupted lung development during infancy. ROS levels were significantly increased in the 7.5 mg/kg PM2.5 group. PM2.5-treated rats showed upregulated pulmonary expression of TLR4 and NF-κB. Maternal PM2.5 exposure enhances the risk of low birth weight and affects lung alveolar development. The underlying molecular mechanisms may involve TLR4/NF-κB signaling.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.