Lakshmi Jaya Madhuri B, Neelima Ayyalasomayajula, Lokesh Murumulla, P. K. Dixit, C. Suresh
{"title":"Defective mitophagy and induction of apoptosis by the depleted levels of PINK1 and Parkin in Pb and β-amyloid peptide induced toxicity","authors":"Lakshmi Jaya Madhuri B, Neelima Ayyalasomayajula, Lokesh Murumulla, P. K. Dixit, C. Suresh","doi":"10.1080/15376516.2022.2054749","DOIUrl":null,"url":null,"abstract":"Abstract Exposure to lead (Pb), an environmental pollutant, is closely associated with the development of neurodegenerative disorders through oxidative stress induction and alterations in mitochondrial function. Damaged mitochondria could be one of the reasons for the progression of Alzheimer’s Disease (AD). Mitophagy is vital in keeping the cell healthy. To know its role in Pb-induced AD, we investigated the PINK1/Parkin dependent pathway by studying specific mitophagy marker proteins such as PINK1 and Parkin in differentiated SH-SY5Y cells. Our data have indicated a significant reduction in the levels of PINK1 and Parkin in cells exposed to Pb and β–amyloid peptides, both Aβ (25-35) and Aβ (1-40) individually and in different combinations, resulting in defective mitophagy. Also, the study unravels the status of mitochondrial permeability transition pore (MPTP), mitochondrial mass, mitochondrial membrane potential (MMP) and mitochondrial ROS production in cells treated with individual and different combination of Pb and Aβ peptides. An increase in mitochondrial ROS production, enhanced MPTP opening, depolarization of membrane potential and reduced mitochondrial mass in the exposed groups were observed. Also, in the present study, we found that Pb and β–amyloid peptides could trigger apoptosis by activating the Bak protein, which releases the cytochrome c from mitochondria through MPTP that further activates the AIF (apoptosis inducing factor) and caspase-3 proteins in the cytosol. The above findings reveal the potential role of mechanisms like PINK1/Parkin mediated mitophagy and dysfunctional mitochondria mediated apoptosis in Pb induced neurotoxicity.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2022.2054749","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Exposure to lead (Pb), an environmental pollutant, is closely associated with the development of neurodegenerative disorders through oxidative stress induction and alterations in mitochondrial function. Damaged mitochondria could be one of the reasons for the progression of Alzheimer’s Disease (AD). Mitophagy is vital in keeping the cell healthy. To know its role in Pb-induced AD, we investigated the PINK1/Parkin dependent pathway by studying specific mitophagy marker proteins such as PINK1 and Parkin in differentiated SH-SY5Y cells. Our data have indicated a significant reduction in the levels of PINK1 and Parkin in cells exposed to Pb and β–amyloid peptides, both Aβ (25-35) and Aβ (1-40) individually and in different combinations, resulting in defective mitophagy. Also, the study unravels the status of mitochondrial permeability transition pore (MPTP), mitochondrial mass, mitochondrial membrane potential (MMP) and mitochondrial ROS production in cells treated with individual and different combination of Pb and Aβ peptides. An increase in mitochondrial ROS production, enhanced MPTP opening, depolarization of membrane potential and reduced mitochondrial mass in the exposed groups were observed. Also, in the present study, we found that Pb and β–amyloid peptides could trigger apoptosis by activating the Bak protein, which releases the cytochrome c from mitochondria through MPTP that further activates the AIF (apoptosis inducing factor) and caspase-3 proteins in the cytosol. The above findings reveal the potential role of mechanisms like PINK1/Parkin mediated mitophagy and dysfunctional mitochondria mediated apoptosis in Pb induced neurotoxicity.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.