Leveraging vehicle connectivity and autonomy for highway bottleneck congestion mitigation using reinforcement learning

IF 3.6 2区 工程技术 Q2 TRANSPORTATION Transportmetrica A-Transport Science Pub Date : 2025-01-02 DOI:10.1080/23249935.2023.2215338
Paul (Young Joun) Ha , Sikai Chen , Jiqian Dong , Samuel Labi
{"title":"Leveraging vehicle connectivity and autonomy for highway bottleneck congestion mitigation using reinforcement learning","authors":"Paul (Young Joun) Ha ,&nbsp;Sikai Chen ,&nbsp;Jiqian Dong ,&nbsp;Samuel Labi","doi":"10.1080/23249935.2023.2215338","DOIUrl":null,"url":null,"abstract":"<div><div>Automation and connectivity based platforms have great potential for managing highway traffic congestion including bottlenecks. Speed harmonisation (SH), one of such platforms, is an Active Traffic Management (ATM) strategy that addresses flow breakdown in real-time by adjusting upstream traffic speeds. However, SH has limitations including the need for supporting roadway infrastructure that is immovable and has limited coverage; the inability to enact control beyond its range; and the dependence on human driver compliance. These issues could be addressed by leveraging connected and automated vehicles (CAVs), which can collect information and execute control along their trajectories, irrespective of drivers’ awareness or compliance. In addressing this objective, this study utilises reinforcement learning to present a CAV control model to achieve efficient speed harmonisation. The results suggest that even at low market penetration, CAVs can significantly mitigate traffic congestion bottlenecks to a greater extent compared to traditional SH approaches.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 1","pages":"Pages 1-26"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993523001914","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Automation and connectivity based platforms have great potential for managing highway traffic congestion including bottlenecks. Speed harmonisation (SH), one of such platforms, is an Active Traffic Management (ATM) strategy that addresses flow breakdown in real-time by adjusting upstream traffic speeds. However, SH has limitations including the need for supporting roadway infrastructure that is immovable and has limited coverage; the inability to enact control beyond its range; and the dependence on human driver compliance. These issues could be addressed by leveraging connected and automated vehicles (CAVs), which can collect information and execute control along their trajectories, irrespective of drivers’ awareness or compliance. In addressing this objective, this study utilises reinforcement learning to present a CAV control model to achieve efficient speed harmonisation. The results suggest that even at low market penetration, CAVs can significantly mitigate traffic congestion bottlenecks to a greater extent compared to traditional SH approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用车辆连接性和自主性,利用强化学习缓解公路瓶颈拥堵
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
期刊最新文献
Quality of service measurement for electric vehicle fast charging stations: a new evaluation model under uncertainties Estimation of stochastic link capacity and link performance function including uncertainty of driver’s behaviour Traffic efficiency and fairness optimisation for autonomous intersection management based on reinforcement learning A novel hybrid deep learning model with ARIMA Conv-LSTM networks and shuffle attention layer for short-term traffic flow prediction Bimodal transit design with heterogeneous demand elasticity under different fare structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1