{"title":"High-Dimensional Dynamic Covariance Matrices With Homogeneous Structure","authors":"Y. Ke, Heng Lian, Wenyang Zhang","doi":"10.1080/07350015.2020.1779079","DOIUrl":null,"url":null,"abstract":"Abstract High-dimensional covariance matrices appear in many disciplines. Much literature has devoted to the research in high-dimensional constant covariance matrices. However, constant covariance matrices are not sufficient in applications, for example, in portfolio allocation, dynamic covariance matrices would be more appropriate. As argued in this article, there are two difficulties in the introduction of dynamic structures into covariance matrices: (1) simply assuming each entry of a covariance matrix is a function of time to introduce the dynamic needed would not work; (2) there is a risk of having too many unknowns to estimate due to the high dimensionality. In this article, we propose a dynamic structure embedded with a homogeneous structure. We will demonstrate the proposed dynamic structure makes more sense in applications and avoids, in the meantime, too many unknown parameters/functions to estimate, due to the embedded homogeneous structure. An estimation procedure is also proposed to estimate the proposed high-dimensional dynamic covariance matrices, and asymptotic properties are established to justify the proposed estimation procedure. Intensive simulation studies show the proposed estimation procedure works very well when the sample size is finite. Finally, we apply the proposed high-dimensional dynamic covariance matrices to portfolio allocation. It is interesting to see the resulting portfolio yields much better returns than some commonly used ones.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07350015.2020.1779079","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2020.1779079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract High-dimensional covariance matrices appear in many disciplines. Much literature has devoted to the research in high-dimensional constant covariance matrices. However, constant covariance matrices are not sufficient in applications, for example, in portfolio allocation, dynamic covariance matrices would be more appropriate. As argued in this article, there are two difficulties in the introduction of dynamic structures into covariance matrices: (1) simply assuming each entry of a covariance matrix is a function of time to introduce the dynamic needed would not work; (2) there is a risk of having too many unknowns to estimate due to the high dimensionality. In this article, we propose a dynamic structure embedded with a homogeneous structure. We will demonstrate the proposed dynamic structure makes more sense in applications and avoids, in the meantime, too many unknown parameters/functions to estimate, due to the embedded homogeneous structure. An estimation procedure is also proposed to estimate the proposed high-dimensional dynamic covariance matrices, and asymptotic properties are established to justify the proposed estimation procedure. Intensive simulation studies show the proposed estimation procedure works very well when the sample size is finite. Finally, we apply the proposed high-dimensional dynamic covariance matrices to portfolio allocation. It is interesting to see the resulting portfolio yields much better returns than some commonly used ones.
期刊介绍:
The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.