Catalytic degradation of Acid Orange 7 by H2O2 as promoted by either bare or V-loaded titania under UV light, in dark conditions, and after incubating the catalysts in ascorbic acid
M. Piumetti, F. Freyria, M. Armandi, G. Saracco, E. Garrone, G. Gonzalez, B. Bonelli
{"title":"Catalytic degradation of Acid Orange 7 by H2O2 as promoted by either bare or V-loaded titania under UV light, in dark conditions, and after incubating the catalysts in ascorbic acid","authors":"M. Piumetti, F. Freyria, M. Armandi, G. Saracco, E. Garrone, G. Gonzalez, B. Bonelli","doi":"10.1080/2055074X.2015.1105618","DOIUrl":null,"url":null,"abstract":"Abstract Pure and V-loaded mesoporous titania (with 2.5 wt-% V) were prepared by template-assisted synthesis and compared to commercial titania (Degussa P25), both as such and after vanadium loading. Mesoporous TiO2 occurred as pure anatase nanoparticles with higher surface area (SSA = 150 m2 g−1) than P25 (SSA = 56 m2 g−1). Degradation of the azo dye Acid Orange 7 by H2O2 was used as a test reaction: under UV light, no difference emerged between mesoporous TiO2 and P25, whereas in dark conditions, higher SSA of the mesoporous sample resulted in higher conversions. Under UV illumination, surface V5+ species inhibited photocatalytic activity, by forming inactive V4+ species. Similarly, in dark conditions, V5+ surface species reacted with H2O2, likely yielding ·O2H radicals and reducing to V4+. On the contrary, V-containing catalysts were very active after pretreatment with ascorbic acid, which reduced V5+ species to V3+species, the latter promoting very lively a Fenton-like reaction.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2055074X.2015.1105618","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2055074X.2015.1105618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 12
Abstract
Abstract Pure and V-loaded mesoporous titania (with 2.5 wt-% V) were prepared by template-assisted synthesis and compared to commercial titania (Degussa P25), both as such and after vanadium loading. Mesoporous TiO2 occurred as pure anatase nanoparticles with higher surface area (SSA = 150 m2 g−1) than P25 (SSA = 56 m2 g−1). Degradation of the azo dye Acid Orange 7 by H2O2 was used as a test reaction: under UV light, no difference emerged between mesoporous TiO2 and P25, whereas in dark conditions, higher SSA of the mesoporous sample resulted in higher conversions. Under UV illumination, surface V5+ species inhibited photocatalytic activity, by forming inactive V4+ species. Similarly, in dark conditions, V5+ surface species reacted with H2O2, likely yielding ·O2H radicals and reducing to V4+. On the contrary, V-containing catalysts were very active after pretreatment with ascorbic acid, which reduced V5+ species to V3+species, the latter promoting very lively a Fenton-like reaction.