Jinzhen Song, Hao Yin, Jianbo Huang, Zhenru Wu, Chenchen Wei, Tingting Qiu, Yan Luo
{"title":"Deep learning for assessing liver fibrosis based on acoustic nonlinearity maps: an in vivo study of rabbits","authors":"Jinzhen Song, Hao Yin, Jianbo Huang, Zhenru Wu, Chenchen Wei, Tingting Qiu, Yan Luo","doi":"10.1080/24699322.2022.2063760","DOIUrl":null,"url":null,"abstract":"Abstract This study aimed to assess liver fibrosis in rabbits by deep learning models based on acoustic nonlinearity maps. Injection of carbon tetrachloride was used to induce liver fibrosis. Acoustic nonlinearity maps, which were built by data of echo signals, were used as input data for deep learning model. Convolutional neural network (CNN), CNN combined with support vector machine (SVM), CNN combined with random forest and CNN combined with logistic regression were used as deep learning model. Nested 10-fold cross-validation was used to search hyperparameters and evaluate performance of models. Histologic examination of liver specimens of the rabbits was performed to evaluate the fibrosis stage. Receiver operator characteristic curve and area under curve (AUC) were used for estimating the probability of the correct prediction of liver fibrosis stages. A total of 600 acoustic nonlinearity maps were used. Model of CNN combined with SVM demonstrated the best diagnostic performance compared with all other methods for diagnosis of significant fibrosis (≥F2, AUC = 0.82), advanced fibrosis (≥F3, AUC = 0.88) and cirrhosis (F4, AUC = 0.90). Model of CNN showed the second highest AUCs. The deep learning model based on acoustic nonlinearity maps demonstrated potential for evaluation of liver fibrosis.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"27 1","pages":"15 - 26"},"PeriodicalIF":1.5000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2022.2063760","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This study aimed to assess liver fibrosis in rabbits by deep learning models based on acoustic nonlinearity maps. Injection of carbon tetrachloride was used to induce liver fibrosis. Acoustic nonlinearity maps, which were built by data of echo signals, were used as input data for deep learning model. Convolutional neural network (CNN), CNN combined with support vector machine (SVM), CNN combined with random forest and CNN combined with logistic regression were used as deep learning model. Nested 10-fold cross-validation was used to search hyperparameters and evaluate performance of models. Histologic examination of liver specimens of the rabbits was performed to evaluate the fibrosis stage. Receiver operator characteristic curve and area under curve (AUC) were used for estimating the probability of the correct prediction of liver fibrosis stages. A total of 600 acoustic nonlinearity maps were used. Model of CNN combined with SVM demonstrated the best diagnostic performance compared with all other methods for diagnosis of significant fibrosis (≥F2, AUC = 0.82), advanced fibrosis (≥F3, AUC = 0.88) and cirrhosis (F4, AUC = 0.90). Model of CNN showed the second highest AUCs. The deep learning model based on acoustic nonlinearity maps demonstrated potential for evaluation of liver fibrosis.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.